МАТЕРИАЛЬНАЯ ТОЧКА
МАТЕРИАЛЬНАЯ ТОЧКА – модельное понятие (абстракция) классической механики, обозначающее тело исчезающе малых размеров, но обладающее некоторой массой.
С одной стороны, материальная точка – простейший объект механики, так как его положение в пространстве определяется всего тремя числами. Например, тремя декартовыми координатами той точки пространства, в которой находится наша материальная точка.
С другой стороны, материальная точка – основной опорный объект механики, так как именно для нее сформулированы основные законы механики. Все другие объекты механики – материальные тела и среды – могут быть представлены в виде той или иной совокупности материальных точек. Например, любое тело можно «разрезать» на малые части и каждую из них принять в качестве материальной точки с соответствующей массой.
Когда можно «заменить» реальное тело материальной точкой при постановке задачи о движении тела, зависит от тех вопросов, на которые должно ответить решение формулируемой задачи.
Возможны различные подходы к вопросу об использовании модели материальной точки.
Один из них носит эмпирический характер. Считают, что модель материальной точки применима тогда, когда размеры движущихся тел пренебрежимо малы по сравнению с величиной относительных перемещений этих тел. В качестве иллюстрации можно привести Солнечную систему. Если считать, что Солнце – неподвижная материальная точка и считать оно действует на другую материальную точку-планету по закону всемирного тяготения, то задача о движении точки-планеты имеет известное решение. Среди возможных траекторий движения точки есть и такие, на которых выполняются законы Кеплера, эмпирически установленные для планет солнечной системы.
Таким образом, при описании орбитальных движений планет модель материальной точки вполне удовлетворительна. (Однако, построение математической модели таких явлений как солнечные и лунные затмения требует учета реальных размеров Солнца, Земли и Луны, хотя эти явления, очевидно, связаны с орбитальными движениями.)
Отношение диаметра Солнца к диаметру орбиты ближайшей планеты – Меркурию – составляет величину ~ 1·10–2, а отношения диаметров ближних к Солнцу планет к диаметрам их орбит – величины ~ 1 ÷ 2·10–4. Могут ли эти числа служить формальным критерием для пренебрежения размерами тела в других задачах и, следовательно, для приемлемости модели материальной точки? Практика показывает, что нет.
Например, маленькая пуля размером l = 1 ÷ 2 см пролетает расстояние L = 1 ÷ 2 км, т.е. отношение , однако траектория полета (да и дальность) существенно зависит не только от массы пули, но и от ее формы, и от того, вращается ли она. Поэтому даже маленькую пулю, строго говоря, нельзя считать материальной точкой. Если в задачах внешней баллистики метаемое тело часто считают материальной точкой, то это сопровождается оговорками ряда дополнительных условий, как правило, эмпирически учитывающих реальные характеристики тела.
Если обратиться к космонавтике, то когда космический аппарат (КА) выведен на рабочую орбиту, при дальнейших расчетах траектории его полета он считается материальной точкой, так как никакие изменения формы КА не оказывают сколько-нибудь заметного влияния на траекторию. Лишь иногда, при коррекциях траектории возникает необходимость обеспечения точной ориентации реактивных двигателей в пространстве.
Когда же спускаемый отсек приблизится к поверхности Земли на расстояние ~100 км, он сразу «превращается» в тело, поскольку от того, каким «боком» он входит в плотные слои атмосферы, зависит, доставит ли отсек в нужную точку Земли космонавтов и возвращаемые материалы.
Модель материальной точки оказалась практически неприемлемой для описания движений таких физических объектов микромира, как элементарные частицы, атомные ядра, электрон и т.п.
Другой подход к вопросу об использовании модели материальной точки носит рациональный характер. По закону изменения количества движения системы, примененному к отдельному телу, центр масс С тела имеет такое же ускорение, как и некоторая (назовем ее эквивалентной) материальная точка, на которую действуют те же силы, что и на тело, т.е.
Вообще говоря, результирующая сила может быть представлена в виде суммы , где зависит только от и (радиус-вектор и скорость точки С), а – и от угловой скорости тела и его ориентации.
Если F2 = 0, то приведенное выше соотношение превращается в уравнение движения эквивалентной материальной точки.
В этом случае говорят, что движение центра масс тела не зависит от вращательного движения тела. Таким образом, возможность использования модели материальной точки получает математическое строгое (а не только эмпирическое) обоснование.
Естественно, что на практике условие F2 = 0 выполняется редко и обычно F2 № 0, однако может оказаться, что F2 в каком-то смысле мало по сравнению с F1. Тогда можно говорить, что модель эквивалентной материальной точки является некоторым приближением при описании движения тела. Оценка точности такого приближения может быть получена математически и если эта оценка окажется приемлемой для «потребителя», то замена тела на эквивалентную материальную точку допустима, в противном случае такая замена приведет к значительным ошибкам.
Это может иметь место и тогда, когда тело движется поступательно и с точки зрения кинематики его можно «заменить» на некоторую эквивалентную точку.
Естественно, что модель материальной точки не пригодна для ответа на такие вопросы, как «почему Луна обращена к Земле лишь одной своей стороной?» Подобные явления связаны с вращательным движением тела.
Виталий Самсонов
Суслов Г.К. Теоретическая механика. М., «Гостехиздат», 1946
Аппель П. Теоретическая механика. тт. 1, 2. М., «Физматгиз», 1960
Четаев Н.Г. Теоретическая механика. М., «Наука», 1987
Маркеев А.П. Теоретическая механика. М., «Наука», 1999
Голубев Ю.Ф. Основы теоретической механики. М., Изд-во Моск. ун-та., 2000
Журавлев В.Ф. Основы теоретической механики. М., «Наука», 2001
Ответь на вопросы викторины «Физика»