ПРОГРЕССИЯ
ПРОГРЕССИЯ, последовательность чисел, получаемых по некоторому правилу. Термин ныне во многом устарел и встречается только в сочетаниях «арифметическая прогрессия» и «геометрическая прогрессия». Арифметическая прогрессия – это последовательность чисел, в которой каждый член получается из предыдущего путем прибавления к нему одного и того же числа, называемого разностью этой арифметической прогрессии, например 1, 2, 3, 4, ј или 2, 5, 8, 11, 14, ј (многоточие означает «и т.д.»).
Разность между последовательными членами необязательно должна быть положительной, например, для прогрессии 3, 1, -1, -3, -5, ј она равна -2. Геометрическая прогрессия – это последовательность чисел, каждое из которых равно предыдущему, умноженному на некоторое постоянное для данной прогрессии число, называемое знаменателем прогрессии, например 5, 10, 20, 40, 80, ј или 5, -10, 20, -40, 80, ј (в первом случае знаменатель равен 2, во втором равен –2).
Формулы.
Рассмотрим n членов арифметической прогрессии. Пусть a – первый член, l – последний член и d – разность между последовательными членами. Тогда
l = a +(n – 1) d.
Сумма первых n членов прогрессии вычисляется следующим образом:
Эту формулу легко запомнить, суть ее в том, что сумма n членов равна числу членов, умноженному на полусумму первого и последнего членов. Например, сумма последовательных целых чисел от 1 до 50 равна (1/2) Ч 50 Ч 51 = 1275.
Рассмотрим теперь n членов геометрической прогрессии; пусть a – первый член, l – последний член, S – сумма первых n членов прогрессии. Вместо разности d мы теперь должны использовать знаменатель прогрессии r, равный отношению любого последующего члена к предыдущему. Тогда
и
Например, если бы за первый день месяца вам заплатили 1 цент, а за каждый последующий день вы получали бы вдвое больше, чем за предыдущий, то за первые 10 дней вы заработали бы всего 10,23 долл., а за первые 30 дней уже 10737418,23 долл. Эти выкладки показывают, что при r >1 члены геометрической прогрессии в конце концов возрастают очень быстро. Такие геометрические прогрессии называются возрастающими. Они используются, например, при вычислении сложных процентов. Если 0 < r < 1, то геометрическая прогрессия называется убывающей, если r < 0, то прогрессия – знакочередующаяся.
Если знаменатель прогрессии r заключен между -1 и +1, то величина r n при больших n очень мала, и при n ® Ґ сумма стремится к пределу a/(1 – r), называемому суммой бесконечно убывающей геометрической прогрессии (см. также РЯДЫ).
Если a и b – два заданных числа, то числа a, (a + b)/2 и b являются тремя последовательными членами арифметической прогрессии, а числа a, и b (a > 0, b > 0) – тремя последовательными членами геометрической прогрессии. Средние члены (a + b)/2 и называются соответственно средним арифметическим и средним геометрическим чисел a и b. (Арифметическое среднее совпадает с обычным средним.)
Другие прогрессии.
Множество чисел иногда называется гармонической прогрессией, если величины, обратные этим числам, являются членами арифметической прогрессии. Например, числа 1, 1/2, 1/3, 1/4, ј образуют гармоническую прогрессию. Числа a, 2ab/(a + b) и b являются тремя последовательными членами гармонической прогрессии, а средний член называется гармоническим средним чисел a и b. Для суммы первых n членов гармонической прогрессии простой формулы не существует, но разность между суммой первых n членов и натуральным логарифмом числа n
при n ® Ґ стремится к некоторому пределу; этот предел называется постоянной Эйлера; ее приближенное значение равно 0,5772.
В арифметической прогрессии разности между последовательными членами постоянны. Если разности не постоянны, а постоянны разности разностей, то прогрессия называется арифметической прогрессией второго порядка. Аналогичным образом определяются арифметические прогрессии более высоких порядков. Например, 2, 6, 12, 20, 30, ј – арифметическая прогрессия второго порядка, так как разности 4, 6, 8, 10, ј образуют арифметическую прогрессию с d = 2.
Ответь на вопросы викторины «Математика»