ВОДОРОД
ВОДОРОД. Еще средневековый ученый Парацельс заметил, что при действии кислот на железо выделяются пузырьки какого-то «воздуха». Но что это такое, он объяснить не мог. Теперь известно, что это был водород. «Водород представляет пример газа, – писал Д.И.Менделеев, – на первый взгляд не отличающегося от воздуха... Парацельс, открывший, что при действии некоторых металлов на серную кислоту получается воздухообразное вещество, не определил его отличия от воздуха. Действительно, водород бесцветен и не имеет запаха, так же, как и воздух; но, при ближайшем знакомстве с его свойствами, этот газ оказывается совершенно отличным от воздуха».
Английские химики 18 в., Генри Кавендиш и Джозеф Пристли, заново открывшие водород, первыми изучили его свойства. Они обнаружили, что это необычайно легкий газ – он в 14 раз легче воздуха. Если надуть им резиновый шарик, он взлетит ввысь. Это свойство водорода использовали раньше для наполнения воздушных шаров и дирижаблей. Правда, первый воздушный шар, построенный братьями Монгольфье, был наполнен не водородом, а дымом от горения шерсти и соломы. Такой странный способ получения горячего воздуха связан с тем, что братья, видимо, не были знакомы с законами физики; они наивно полагали, что эта смесь образует «электрический дым», способный поднять их легкий шар. Физик Шарль, знавший закон Архимеда, решил наполнить шар водородом; в отличие от монгольфьеров, наполненных горячим воздухом, шары с водородом французы называли шарльерами. Первый такой шар (он не нес никакого груза) поднялся с Марсова поля в Париже 27 августа 1783 и за 45 минут пролетел 20 км.
В декабре 1783 Шарль в сопровождении физика Франсуа Робера в присутствии 400 тысяч зрителей предприняли первый полёт на воздушном шаре, заполненном водородом. Гей-Люссак (также совместно с физиком Жаном Батистом Био) поставил в 1804 рекорд высоты, поднявшись на 7000 метров.
Но водород горюч. Более того, его смеси с воздухом взрываются, а смесь водорода с кислородом называют даже «гремучим газом». В мае 1937 пожар за несколько минут уничтожил гигантский немецкий дирижабль «Гинденбург» – в нем было 190 000 кубометров водорода. Тогда погибло 35 человек. После многих несчастных случаев водород в воздухоплавании больше не используют, его заменяют гелием или горячим воздухом.
При горении водорода образуется вода – соединение водорода и кислорода. Это доказал в конце 18 французский химик Лавуазье. Отсюда и название газа – «рождающий воду». Лавуазье также сумел получить водород из воды. Он пропускал водяные пары через раскаленную докрасна железную трубку с железными опилками. Кислород из воды прочно соединялся с железом, а водород выделялся в свободном виде. Сейчас водород тоже получают из воды, но другим способом – с помощью электролиза (см. ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ. ЭЛЕКТРОЛИТЫ)
Водород – самый распространенный химический элемент во Вселенной. Он составляет примерно половину массы Солнца и большинства звезд, является основным элементом в межзвездном пространстве и в газовых туманностях. Распространен водород и на Земле. Здесь он находится в связанном состоянии – в виде соединений. Так, вода содержит 11% водорода по массе, глина – 1,5%. В виде соединений с углеродом водород входит в состав нефти, природных газов, всех живых организмов. Немного свободного водорода содержится в воздухе, но его там совсем мало – всего 0,00005%. Он попадает в атмосферу из вулканов.
Водороду принадлежит много других «рекордов». Жидкий водород – самая легкая жидкость (плотность 0,067 г/см3 при температуре –250оС), а твердый водород – самое легкое твердое вещество (плотность 0,076 г/см3). Атомы водорода – самые маленькие из всех атомов. Однако при поглощении энергии электромагнитного излучения внешний электрон атома может удаляться от ядра все дальше и дальше. Поэтому возбужденный атом водорода теоретически может иметь любые размеры. А практически? В книге Мировые рекорды в химии сказано, что в межзвездных облаках якобы обнаружены по их спектрам атомы водорода диаметром 0,4 мм (они зафиксированы по спектральному переходу с 253-й на 252-ю орбиталь). Атомы таких размеров вполне можно увидеть невооруженным глазом! При этом дается ссылка на статью, опубликованную в 1991 в самом известном в мире журнале, посвященном химическому образованию – Journal of Chemical Education (он издается в США). Однако автор статьи ошибся – он завысил все размеры ровно в 100 раз (об этом сообщил тот же журнал год спустя). Значит, обнаруженные атомы водорода имеют диаметр «всего лишь» 0,004 мм, и такие атомы, даже если бы они был «твердыми», невооруженным глазом увидеть нельзя – только в микроскоп. Конечно, по атомным меркам и 0,004 мм – величина огромная, в десятки тысяч раз больше диаметра невозбужденного атома водорода.
Молекулы водорода тоже очень маленькие. Поэтому этот газ легко проходит через самые тонкие щели. Резиновый шарик, надутый водородом, «худеет» намного быстрее шарика, надутого воздухом: молекулы водорода понемногу просачиваются через мельчайшие поры в резине.
Если вдохнуть водород и начать разговаривать, то частота издаваемых звуков будет втрое выше обычной. Этого достаточно, чтобы звук даже низкого мужского голоса оказался неестественно высоким, напоминающим голос Буратино. Происходит это потому, что высота звука, издаваемая свистком, органной трубой или голосовым аппаратом человека, зависит не только от их размеров и материала стенок, но и от газа, которым они наполнены. Чем больше скорость звука в газе, тем выше его тон. Скорость звука зависит от массы молекул газа. Молекулы водорода значительно легче молекул азота и кислорода, из которых состоит воздух, и звук в водороде распространяется почти вчетверо быстрее, чем в воздухе. Однако вдыхать водород рискованно: в легких он неминуемо смешается с остатками воздуха и образует гремучую смесь. И если при выдохе поблизости окажется огонь... Вот какая история произошла с французским химиком, директором Парижского музея науки Пилатром де Розье (1756–1785). Как-то он решил проверить, что будет, если вдохнуть водород; до него никто такого эксперимента не проводил. Не заметив никакого эффекта, ученый решил убедиться, проник ли водород в легкие. Он еще раз хорошо вдохнул этот газ, а затем выдохнул его на огонь свечи, ожидая увидеть вспышку пламени. Однако водород в легких смелого экспериментатора был смешан с воздухом и произошел сильный взрыв. «Я думал, что у меня вылетели все зубы вместе с корнями», – писал он впоследствии, очень довольный опытом, который чуть не стоил ему жизни.
Помимо «обычного» водорода (протия, от греческого protos – первый), в природе присутствует также его тяжелый изотоп – дейтерий (от латинского deuteros – второй) и в ничтожных количествах сверхтяжелый водород – тритий. Долгие и драматические поиски этих изотопов вначале не давали результата из-за недостаточной чувствительности приборов. В конце 1931 группа американских физиков – Г.Юри со своими учениками, Ф.Брикведде и Дж.Мэрфи, взяли 4 л жидкого водорода и подвергли его фракционной перегонке, получив в остатке всего 1 мл, т.е. уменьшив объем в 4 тысячи раз. Этот последний миллилитр жидкости после ее испарения и был исследован спектроскопическим методом. Опытный спектроскопист Юри заметил на спектрограмме обогащенного водорода новые очень слабые линии, отсутствующие у обычного водорода. При этом положение линий в спектре точно соответствовало проведенному им квантово-механическому расчету нуклида 2H.
После спектроскопического обнаружения дейтерия было предложено разделять изотопы водорода электролизом. Эксперименты показали, что при электролизе воды легкий водород действительно выделяется быстрее, чем тяжелый. Именно это открытие стало ключевым для получения тяжелого водорода. Статья, в которой сообщалось об открытии дейтерия, была напечатана весной 1932, а уже в июле были опубликованы результаты по электролитическому разделению изотопов. В 1934 за открытие тяжелого водорода Гарольд Клейтон Юри получил Нобелевскую премию по химии.
17 марта 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о выдающемся результате – искусственном получении третьего изотопа водорода – трития. В 1946 известный авторитет в области ядерной физики, лауреат Нобелевской премии У.Ф.Либби предположил, что тритий непрерывно образуется в результате идущих в атмосфере ядерных реакций. Однако в природе трития так мало (1 атом 1Н на 1018 атомов 3Н), что обнаружить его удалось только по слабой радиоактивности (период полураспада 12,3 года).
Водород образует соединения – гидриды со многими элементами. В зависимости от второго элемента, гидриды очень сильно различаются по свойствам. Наиболее электроположительные элементы (щелочные и тяжелые щелочноземельные металлы) образуют так называемые солеобразные гидриды ионного характера. Они получаются в результате непосредственной реакции металла с водородом под давлением и при повышенной температуре (300–700oС), когда металл находится в расплавленном состоянии. Их кристаллическая решетка содержит катионы металлов и гидрид-анионы H– и построена аналогично решетке NaCl. При нагревании до температуры плавления солеобразные гидриды начинают проводить электрический ток, при этом, в отличие от электролиза водных растворов солей, водород выделяется не на катоде, а на положительно заряженном аноде. Солеобразные гидриды реагируют с водой с выделением водорода и образованием раствора щелочи, легко окисляются и кислородом и используются как сильные восстановители.
Ряд элементов образуют ковалентные гидриды, среди которых наиболее известны гидриды элементов IV–VI групп, например, метан CH4, аммиак NH3, сероводород H2S и т.п. Ковалентные гидриды обладают высокой реакционной способностью и являются восстановителями. Некоторые из этих гидридов малостабильны и разлагаются при нагревании или гидролизуются водой. Примером могут служить SiH4, GeH4, SnH4. С точки зрения строения интересны гидриды бора, например, В2Н6, В6Н10, В10Н14 и др., в которых пара электронов связывает не два, как обычно, а три атома В–Н–В. К ковалентным относят и некоторые смешанные гидриды, например, литийалюминийгидрид LiAlH4, который нашел широкое применение в органической химии в качестве восстановителя. Гидриды германия, кремния, мышьяка используют для получения высокочистых полупроводниковых материалов.
Гидриды переходных металлов весьма разнообразны по свойствам и строению. Часто это соединения нестехиометрического состава, например, металлоподобные TiH1,7, LaH2,87 и т.п. При образовании подобных гидридов водород сначала адсорбируется на поверхности металла, затем происходит его диссоциация на атомы, которые диффундируют вглубь кристаллической решетки металла, образуя соединения внедрения. Наибольший интерес представляют гидриды интерметаллических соединений, например, содержащие титан, никель, редкоземельные элементы. Число атомов водорода в единице объема такого гидрида может быть в пять раз больше, чем даже в чистом жидком водороде! Уже при комнатной температуре сплавы упомянутых металлов способны быстро поглощать значительные количества водорода, а при нагревании – выделять его. Таким образом получают обратимые «химические аккумуляторы» водорода, которые, в принципе, могут использоваться для создания двигателей, работающих на водородном топливе. Из других гидридов переходных металлов интересен гидрид урана постоянного состава UH3, который служит источником других соединений урана высокой чистоты.
Водород используют в основном для получения аммиака, который нужен для производства удобрений и многих других веществ. Из жидких растительных масел с помощью водорода получают твердые жиры, похожие на сливочное масло и другие животные жиры. Их используют в пищевой промышленности. При производстве изделий из кварцевого стекла требуется очень высокая температура. И здесь водород находит применение: горелка с водородно-кислородным пламенем дает температуру выше 2000 градусов, при которой кварц легко плавится.
В лабораториях и в промышленности широко используется реакция присоединения водорода к различным соединениям – гидрирование. Наиболее распространены реакции гидрирования кратных углерод-углеродных связей. Так, из ацетилена можно получить этилен или (при полном гидрировании) этан, из бензола – циклогексан, из жидкой непредельной олеиновой кислоты – твердую предельную стеариновую кислоту и т.д. Гидрированию подвергаются и другие классы органических соединений, при этом происходит их восстановление. Так, при гидрировании карбонильных соединений (альдегидов, кетонов, сложных эфиров) образуются соответствующие спирты; например, из ацетона получается изопропиловый спирт. При гидрировании нитросоединений образуются соответствующие амины.
Гидрирование молекулярным водородом часто проводят в присутствии катализаторов. В промышленности, как правило, используют гетерогенные катализаторы, к которым относятся металлы VIII группы периодической системы элементов – никель, платина, родий, палладий. Самый активный из этих катализаторов – платина; с ее помощью можно гидрировать при комнатной температуре без давления даже ароматические соединения. Активность более дешевых катализаторов можно повысить, проводя реакцию гидрирования под давлением при повышенных температурах в специальных приборах – автоклавах. Так, для гидрирования ароматических соединений на никеле требуются давления до 200 атм и температура выше 150oС.
В лабораторной практике широко используют также различные способы некаталитического гидрирования. Один из них – действие водорода в момент выделения. Такой «активный водород» можно получить в реакции металлического натрия со спиртом или амальгамированного цинка с соляной кислотой. Значительное распространение в органическом синтезе получило гидрирование комплексными гидридами – борогидридом натрия NaBH4 и алюмогидридом лития LiAlH4. Реакцию проводит в безводных средах, так как комплексные гидриды мгновенно гидролизуются.
Водород используют во многих химических лабораториях. Его хранят под давлением в стальных баллонах, которые для безопасности с помощью специальных хомутов прикрепляют к стене или даже выносят во двор, а газ поступает в лабораторию по тонкой трубке.
Илья Леенсон
Химия и жизнь (Солтеровская химия). Ч.2. Химические новеллы. М.: изд-во РХТУ им. Д.И.Менделеева, 1997
Айзек Азимов. Краткая история химии. СПб: Амфора, 2002
Ответь на вопросы викторины «Неизвестные подробности»