ТОКАМАК
ТОКАМАК – устройство для осуществления реакции термоядерного синтеза в горячей плазме в квазистационарном режиме, причем плазма создается в тороидальной камере и ее стабилизирует магнитное поле. Предназначение установки – преобразование внутриядерной энергии в тепловую и далее – в электрическую. Само cлово «токамак» является аббревиатурой от названия «тороидальная камера магнитная», однако создатели установки заменили в конце «г» на «к», чтобы не вызывать ассоциаций с чем-то магическим.
Атомную энергию (и в реакторе, и в бомбе) человек получает, разделяя ядра тяжелых элементов на более легкие. Энергия, приходящаяся на нуклон, максимальна для железа (так называемый «железный максимум»), а т.к. максимум посредине, то энергия будет выделяться не только при распаде тяжелых, но и при соединении легких элементов. Этот процесс называется термоядерным синтезом, он происходит в водородной бомбе и термоядерном реакторе. Термоядерных реакций, реакций синтеза, известно много. Источником энергии могут быть те, для которых есть недорогое топливо, причем возможны два принципиально разных пути запуска реакции синтеза.
Первый путь – «взрывной»: часть энергии тратится на то, чтобы привести в необходимое исходное состояние очень небольшое количество вещества, происходит реакция синтеза, выделившаяся энергия преобразуется в удобную форму. Собственно, это водородная бомба, только весом в миллиграмм. В качестве источника исходной энергии использовать атомную бомбу нельзя она не бывает «маленькой». Поэтому предполагалось, что миллиметровая таблетка из дейтерий-тритиевого льда (или стеклянная сфера со сжатой смесью дейтерия и трития) будет облучаться со всех сторон лазерными импульсами. Плотность энергии на поверхности должна быть при этом такой, чтобы превратившийся в плазму верхний слой таблетки оказался нагрет до температуры, при которой давление на внутренние слои и сам нагрев внутренних слоев таблетки станут достаточными для реакции синтеза. При этом импульс должен быть настолько коротким, чтобы вещество, превратившееся за наносекунду в плазму с температурой в десять миллионов градусов, не успевало разлететься, а давило на внутреннюю часть таблетки. Эта внутренняя часть сжимается до плотности, в сто раз большей, чем плотность твердых тел, и нагревается до ста миллионов градусов.
Второй путь. Исходные вещества можно нагреть относительно медленно – они превратятся в плазму, а потом в нее можно любым способом вводить энергию, вплоть до достижения условий начала реакции. Для протекания термоядерной реакции в смеси дейтерия с тритием и получения положительного выхода энергии (когда энергия, выделившаяся в результате термоядерной реакции окажется больше энергии, затраченной на осуществление этой реакции), нужно создать плазму с плотностью хотя бы 1014 частиц/см3 (10–5 атм.), и нагреть ее примерно до 109 градусов, при этом плазма становится полностью ионизованной.
Такой нагрев необходим, чтобы ядра могли сблизиться, несмотря на кулоновское отталкивание. Можно показать, что для получения энергии нужно поддерживать это состояние не менее секунды (так называемый «критерий Лоусона»). Более точная формулировка критерия Лоусона – произведение концентрации и времени поддержания этого состояния должно быть порядка 1015 сЧсм–3. Главная проблема – устойчивость плазмы: за секунду она много раз успеет расшириться, коснуться стенок камеры и охладиться.
В 2006 международное сообщество приступает к строительству демонстрационного реактора. Этот реактор не будет настоящим источником энергии, но он спроектирован так, что после него – если все нормально заработает – можно будет приступить к строительству «энергетических», т.е. предназначенных для включения в энергосеть, термоядерных реакторов. Самые крупные физические проекты (ускорители, радиотелескопы, космические станции) становятся настолько дорогими, что рассмотрение двух вариантов оказывается не по карману даже объединившему свои усилия человечеству, поэтому приходится делать выбор.
Начало работ над управляемым термоядерным синтезом следует отнести к 1950, когда И.Е.Тамм и А.Д.Сахаров пришли к выводу, что реализовать УТС (управляемый термоядерный синтез) можно с помощью магнитного удержания горячей плазмы. На начальном этапе работы у нас в стране велись в Курчатовском институте под руководством Л.А.Арцимовича. Основные проблемы можно разделить на две группы – проблемы неустойчивости плазмы и технологические (чистый вакуум, стойкость к облучению и т.п.) Первые токамаки были созданы в 1954–1960, сейчас в мире построено более 100 токамаков. В 1960-х было показано, что только с помощью нагрева за счет пропускания тока («омического нагрева») нельзя довести плазму до термоядерных температур. Наиболее естественным путем повышения энергосодержания плазмы казался метод внешней инжекции быстрых нейтральных частиц (атомов), но только в 1970-х был достигнут необходимый технический уровень и поставлены реальные эксперименты с применением инжекторов. Сейчас наиболее перспективными считаются нагрев нейтральных частиц инжекцией и электромагнитным излучением СВЧ-диапазона. В 1988 в Курчатовском институте построен токамак предреакторного поколения Т-15 со сверхпроводящими обмотками. С 1956, когда во время визита Н.С.Хрущева в Великобританию И.В.Курчатов сообщил о проведении этих работ в СССР. работы в этой области ведутся совместно несколькими странами. В 1988 СССР, США, Европейский Союз и Япония начали проектирование первого экспериментального реактора-токамака (установка будет строиться во Франции).
Размеры спроектированного реактора – 30 метров в диаметре при 30-метровой высоте. Ожидаемый срок сооружения этой установки – восемь лет, а срок эксплуатации – 25 лет. Объем плазмы в установке – порядка 850 кубических метров. Ток в плазме – 15 мегаампер. Термоядерная мощность установки 500 Мегаватт поддерживается в течение 400 секунд. В дальнейшем это время предполагается довести до 3000 секунд, что даст возможность проводить на реакторе ИТЭР первые реальные исследования физики термоядерного синтеза («термоядерного горения») в плазме.
Конструкция.
Устройство выглядит так – тороидальная камера надета на сердечник трансформатора, плазма в камере является, по сути дела, обмоткой трансформатора. Из камеры откачивают атмосферный воздух, а потом напускают смесь газов, содержащих те атомы, которые будут участвовать в синтезе. Затем по первичной обмотке трансформатора пропускают импульс тока, достаточный для того, чтобы во вторичной «обмотке» (т.е. в газе) произошел пробой и начал течь ток. При протекании тока плазма нагревается, но одним этим методом не удается ее нагреть выше 20 млн. градусов, поскольку с ростом температуры сопротивление плазмы и выделение тепла уменьшаются. Ток, текущий по плазме, создает свое магнитное поле, которое сжимает плазму, увеличивая ее температуру и концентрацию, но этого еще недостаточно для достижения критерия Лоусона, поэтому плазму надо нагревать дополнительно. Этот добавочный нагрев может достигаться электромагнитным излучением частотой от 10 Мгц до 10 Ггц, потоком нейтральных атомов с высокой энергией – около 0,1 МэВ или сжатием внешним переменным магнитным полем.
Плазма «живет» в магнитном поле. Постоянное поле можно было бы создать постоянным магнитом, хотя у них есть свои ограничения, но в данном случае вопрос о постоянном магните не возникает, т.к. нужны переменные поля, поэтому используется электромагнит, но при протекании тока по его обмотке выделяется тепло. Когда это происходит в плазме, тепло используется, а в обмотке – тратится зря, его надо отводить, и тратить энергию, предназначенную для обеспечения протекания тока по обмоткам – тратить, при этом на работу электромагнитов тратилась бы заметная доля полученной энергии, при этом обмотки будут делать из сверхпроводящих материалов.
Одной из важных проблем токамака является обеспечение чистоты плазмы, так как попадающие в плазму примеси прекращают реакцию. Попадают они в плазму со стенок камеры, так как запускаемые в объем рабочие вещества можно очистить, а стенка камеры работает в таких условиях, что проблема – из чего и как ее сделать – получила собственное название: «проблема первой стенки». Все, что выходит из плазмы (нейтроны, протоны, ионы и электромагнитное излучение в диапазоне от инфракрасного до гамма-лучей), разрушает стенку, продукты разрушения попадают в плазму. Проблема стойкости и проблема «не вредности» решаются в противоположных направлениях, т.к. чем тяжелее ион, тем он вреднее (допустимая концентрация тантала и вольфрама в сто раз меньше, чем углерода), а большинство стойких материалов создано на основе именно тяжелых металлов. Одно время большие надежды возлагались на углеродные материалы и композиты на основе карбидов, боридов и нитридов. Рассматривались пористые и профилированные (с ребрами или иглами) стенки. И вообще, трудно сказать, что не рассматривалось, но в итоге в качестве материала стенок сейчас выбран бериллий.
Горючее.
Легче всего происходит слияние ядер изотопов водорода – дейтерия D и трития T. Ядро дейтерия содержит один протон и один нейтрон. Дейтерий есть в воде – одна часть на 6500 частей водорода. Ядро трития состоит из протона и двух нейтронов. При синтезе ядер дейтерия и трития образуются гелий He с атомной массой, равной четырем, нейтрон n и выделяется энергия 17,6 МэВ.
D + T = 4He + n + 17,6 МэВ.
Оптимальная температура реакции – 2·108 К, критерий Лоусона –
0,5·1015см–3·сек.
Другой вариант – слияние двух ядер дейтерия. Оно происходит примерно с одинаковой вероятностью по одному из двух сценариев: в первом образуются тритий, протон p и выделяется энергия 4МэВ, во втором – гелий с атомной массой 3, нейтрон и энергия 3,25 МэВ.
D + D = T + p + 4,0 МэВ, D + D = 3He + n + 3,25 МэВ.
Оптимальная температура для этой реакции 109К, критерий Лоусона –1015см–3·сек.
Скорость реакции D + T в сотни раз выше, чем реакции D + D, поэтому для реакции D + T значительно легче достичь условий, когда выделившаяся термоядерная энергия превзойдет затраты на организацию процессов слияния. Возможны и реакции синтеза с участием других ядер элементов (лития, бора и др.), однако эти реакции с нужной скоростью протекают при еще более высоких температурах.
Тритий нестабилен (период полураспада 12,4 года), но его предполагается получать на месте из изотопа лития и получающихся в реакторе же нейтронов
6Li + n = Т + 4He + 4,8 МэВ.
Одновременно этот же литий (система, его содержащая, называется бланкетом) нагревается и может служить теплоносителем в первом (радиоактивном) контуре. Далее он передает тепло второму контуру, в котором вода испаряется, и затем как обычно – турбина, генератор, провода.
Проблема заключается в том, что слиянию ядер препятствуют электрические (кулоновские) силы расталкивания, поэтому для синтеза необходимо преодолеть кулоновский барьер, т.е. совершить работу против этих сил, сообщая ядрам необходимую энергию. Есть три возможности. Первая – разогнать в ускорителе пучок ионов и бомбардировать ими твердую мишень. Этот путь неэффективен – энергия расходуется на ионизацию атомов мишени, а не на сближение ядер. Второй путь – направить навстречу друг другу два ускоренных пучка ионов, но и этот путь неэффективен из-за низкой концентрации ядер в пучках и малого времени их взаимодействия. Еще один путь – нагрев вещества до температур порядка 100 млн. градусов. Чем выше температура, тем выше средняя кинетическая энергия частиц и тем большее их количество может преодолеть кулоновский барьер. Этот метод и реализован в токамаке.
Токамак (как и ядерный реактор) не выделяет никаких вредных веществ – ни химических, ни радиоактивных – он не выделяет. За всю историю токамака главной его физической (не технической) проблемой была устойчивость – плазменный шнур изгибался и расширялся. Подбором конфигурации магнитного поля удалось увеличить устойчивость плазмы до возможности технической реализации. Но что произойдет, если все-таки реактор разрушится? Ответа на этот вопрос пока нет, однако ясно, что в случае аварии токамака он менее опасен, чем атомный реактор, и не намного более опасен, чем станция на угле. Во-первых, атомный реактор содержит в себе запас горючего на годы нормальной работы. Это большой плюс для подводной лодки или космического полета, но это же создает принципиальную возможность крупной аварии. В токамаке запаса «горючего» нет. Во-вторых, поскольку при реакции синтеза выделяется больше энергии, то при сравнимой мощности сами количества веществ будут меньше – плазма в токамаке «весит» меньше ста грамм, а сколько весит активная зона реактора? И наконец, тритий имеет маленький период полураспада и сам по себе не ядовит.
Леонид Ашкинази
Лукьянов С.Ю. Горячая плазма и управляемый ядерный синтез. М., Наука, 1975
Арцимович Л. А., Сагдеев Р.З. Физика плазмы для физиков. М., Атомиздат, 1979
Хеглер М., Кристиансен М. Введение в управляемый термоядерный синтез. М., Мир, 1980
Киллин Дж. Управляемый термоядерный синтез. М., Мир, 1980
Бойко В.И. Управляемый термоядерный синтез и проблемы инерциального термоядерного синтеза. Соросовский образовательный журнал. 1999, № 6
Ответь на вопросы викторины «Физика»