ГЕОЛОГИЯ
ГЕОЛОГИЯ, наука о строении и истории развития Земли. Основные объекты исследований – горные породы, в которых запечатлена геологическая летопись Земли, а также современные физические процессы и механизмы, действующие как на ее поверхности, так и в недрах, изучение которых позволяет понять, каким образом происходило развитие нашей планеты в прошлом.
Земля постоянно изменяется. Некоторые изменения происходят внезапно и весьма бурно (например, вулканические извержения, землетрясения или крупные наводнения), но чаще всего – медленно (за столетие сносится или накапливается слой осадков мощностью не более 30 см). Такие перемены не заметны на протяжении жизни одного человека, но накоплены некоторые сведения об изменениях за продолжительный срок, а при помощи регулярных точных измерений фиксируются даже незначительные движения земной коры. Например, таким образом установлено, что территория вокруг Великих озер (США и Канада) и Ботнического залива (Швеция) в настоящее время поднимается, а восточное побережье Великобритании – опускается и затапливается.
Однако значительно более содержательная информация об этих изменениях заключается в самих горных породах, представляющих собой не просто совокупность минералов, а страницы биографии Земли, которые можно прочесть, если владеть языком, которым они написаны.
Такая летопись Земли весьма продолжительна. История Земли началась одновременно с развитием Солнечной системы примерно 4,6 млрд. лет назад. Однако для геологической летописи характерны фрагментарность и неполнота, т.к. многие древние породы были разрушены или перекрыты более молодыми осадками. Пробелы должны восполняться посредством корреляции с событиями, происходившими в других местах и о которых имеется больше данных, а также методом аналогий и выдвижением гипотез. Относительный возраст пород определяется на основании комплексов содержащихся в них ископаемых остатков, а отложений, в которых такие остатки отсутствуют, – по взаимному расположению тех и других. Кроме того, абсолютный возраст почти всех пород может быть установлен геохимическими методами. См. также РАДИОУГЛЕРОДНОЕ ДАТИРОВАНИЕ.
Геологические дисциплины.
Геология выделилась в самостоятельную науку в 18 в. Современная геология подразделяется на ряд тесно взаимосвязанных отраслей. К ним относятся: геофизика, геохимия, историческая геология, минералогия, петрология, структурная геология, тектоника, стратиграфия, геоморфология, палеонтология, палеоэкология, геология полезных ископаемых. Существуют также несколько междисциплинарных областей исследований: морская геология, инженерная геология, гидрогеология, сельскохозяйственная геология и геология окружающей среды (экогеология). Геология тесно связана с такими науками, как гидродинамика, океанология, биология, физика и химия.
ПРИРОДА ЗЕМЛИ
Кора, мантия и ядро.
Бóльшая часть сведений о внутреннем строении Земли получена косвенно на основании интерпретации поведения сейсмических волн, которые регистрируются сейсмографами.
В недрах Земли установлены два основных рубежа, на которых происходит резкая смена характера распространения сейсмических волн. Один из них, с сильной отражающей и преломляющей способностью, расположен на глубине 13–90 км от поверхности под материками и 4–13 км – под океанами. Он называется границей Мохоровичича, или поверхностью Мохо (М), и считается геохимической границей и зоной фазового перехода минералов под влиянием высокого давления. Эта граница разделяет земную кору и мантию. Второй рубеж находится на глубине 2900 км от поверхности Земли и соответствует границе мантии и ядра (рис. 1). См. также ЗЕМЛИ СТРОЕНИЕ.
Температуры.
На основании того, что из вулканов извергается расплавленная лава, сложилось представление, что недра Земли раскалены. По результатам температурных измерений в шахтах и нефтяных скважинах установлено, что с глубиной температура земной коры непрерывно повышается. Если бы такая тенденция сохранялась вплоть до ядра Земли, то его температура составила бы ок. 2925° С, т.е. значительно превышала бы точки плавления обычно встречающихся на земной поверхности пород. Однако на основании данных о распространении сейсмических волн считается, что бóльшая часть недр Земли находится в твердом состоянии.
Решение вопроса о температуре земных недр, тесно связанной с ранней историей Земли, имеет большое значение, но до сих пор он остается дискуссионным. Согласно одним теориям, Земля первоначально была раскаленной, а затем остыла, согласно другим – первоначально была холодной, а затем разогрелась под действием тепла, генерируемого в процессе распада радиоактивных элементов и высокого давления на глубине.
Земной магнетизм.
Обычно считается, что магнитное поле создается внутри Земли, однако механизм его возникновения недостаточно ясен. Магнитное поле не может быть результатом постоянной намагниченности железного ядра Земли, поскольку температура уже на глубине нескольких десятков километров значительно ниже точки Кюри – температуры, при которой вещество утрачивает свои магнитные свойства. Кроме того, гипотеза постоянного магнита в фиксированном положении противоречит отмечаемым изменениям магнитного поля в настоящее время и в прошлом.
Остаточная намагниченность сохраняется в осадочных и вулканических породах. Частички магнетита, осаждающиеся в спокойных водоемах, а также магнитные минералы в лавовых потоках при температуре ниже точки Кюри остывают и ориентируются по направлению силовых линий локального магнитного поля, существовавшего во время образования пород. Палеомагнитные исследования горных пород позволяют установить положение магнитных полюсов, которые существовали во время осадконакопления и оказывали воздействие на ориентировку магнитных частиц. Полученные результаты свидетельствуют о том, что либо магнитные полюса, либо участки земной коры со временем существенно меняли свое положение по отношению к оси вращения Земли (первое представляется маловероятным). Имеются также веские доказательства того, что материки перемещались относительно друг друга. Например, положения магнитного полюса, определенные по палеомагнитным данным для пород одного и того же возраста в Северной Америке, Европе и Австралии, пространственно не совпадают. Эти факты подтверждают гипотезу, согласно которой материки образовались из единого праматерика в результате его деления на отдельные части и последующего их раздвижения. См. также ГЕОМАГНЕТИЗМ.
Гравитационное поле Земли.
Гравитационными исследованиями установлено, что земная кора и мантия под воздействием дополнительных нагрузок прогибаются. Например, если земная кора всюду имела бы одинаковую мощность и плотность, то следовало бы ожидать, что в горах (где масса пород больше) действовала бы бóльшая сила притяжения, чем на равнинах или в морях. Однако примерно с середины 18 в. было замечено, что гравитационное притяжение в горах и вблизи них меньше предполагаемого (если допустить, что горы представляют собой просто дополнительную массу земной коры). Этот факт объяснялся наличием «пустот», которые интерпретировались как разуплотнившиеся при нагревании породы или как соляное ядро гор. Такие объяснения оказались несостоятельными, и в 1850-х годах были предложены две новые гипотезы.
В соответствии с первой гипотезой, земная кора состоит из блоков пород разных размеров и плотности, плавающих в более плотной среде. Основания всех блоков располагаются на одном уровне, а блоки, характеризующиеся низкой плотностью, должны быть большей высоты, чем блоки, имеющие высокую плотность. Горные сооружения принимались за блоки низкой плотности, а океанические бассейны – высокой (при одинаковой общей массе тех и других).
Согласно второй гипотезе, плотность всех блоков одинакова и плавают они в более плотной среде, а различная высота поверхности объясняется их разной мощностью. Она известна как гипотеза горных корней, поскольку чем выше блок, тем глубже он погружен во вмещающую среду. В 1940-х годах были получены сейсмические данные, подтверждающие представление об утолщении земной коры в горных областях. См. также ТЯГОТЕНИЕ (ГРАВИТАЦИЯ).
Изостазия.
Всякий раз, когда на земную поверхность поступает дополнительная нагрузка (например, в результате осадконакопления, вулканизма или оледенения), земная кора прогибается и проседает, а когда эта нагрузка снимается (в результате денудации, таяния ледниковых покровов и пр.), земная кора поднимается. Этот компенсационный процесс, известный как изостазия, вероятно, реализуется посредством горизонтального переноса масс в пределах мантии, где может происходить периодическое расплавление материала. Установлено, что некоторые участки побережья Швеции и Финляндии за последние 9000 лет поднялись более чем на 240 м, главным образом вследствие таяния ледникового покрова. Поднятые побережья Великих озер в Северной Америке сформировались также в результате изостазии. Несмотря на действие таких компенсационных механизмов, крупные океанические впадины и некоторые дельты обнаруживают значительный дефицит массы, в то время как некоторые районы Индии и Кипр – существенный ее избыток.
Вулканизм.
Происхождение лавы.
В некоторых районах земного шара магма во время вулканических извержений изливается на земную поверхность в виде лавы. Многие вулканические островные дуги, по-видимому, связаны с системой глубинных разломов. Центры землетрясений располагаются примерно на глубине до 700 км от уровня земной поверхности, т.е. вулканический материал поступает из верхней мантии. На островных дугах он часто имеет андезитовый состав, а поскольку андезиты по своему составу сходны с континентальной земной корой, многие геологи считают, что континентальная кора в этих районах наращивается за счет поступления мантийного вещества.
Вулканы, действующие вдоль океанических хребтов (например, Гавайского), извергают материал преимущественно базальтового состава. Эти вулканы, вероятно, сопряжены с мелкофокусными землетрясениями, глубина которых не превышает 70 км. Поскольку базальтовые лавы встречаются как на материках, так и вдоль океанических хребтов, некоторые геологи предполагают, что непосредственно под земной корой существует слой, из которого поступают базальтовые лавы. См. также ВУЛКАНЫ.
Однако неясно, почему в одних районах из мантийного вещества образуются и андезиты, и базальты, а в других – только базальты. Если, как теперь полагают, мантия действительно является ультраосновной породой (т.е. обогащена железом и магнием), то лавы, произошедшие из мантии, должны иметь базальтовый, а не андезитовый состав, поскольку минералы андезитов отсутствуют в ультраосновных породах. Это противоречие разрешает теория тектоники плит, согласно которой океаническая кора поддвигается под островные дуги и на определенной глубине плавится. Эти расплавленные породы и изливаются в виде андезитовых лав.
Источники тепла.
Одной из нерешенных проблем проявления вулканической активности является определение источника тепла, необходимого для локального плавления базальтового слоя или мантии. Такое плавление должно быть узколокализованным, поскольку прохождение сейсмических волн показывает, что кора и верхняя мантия обычно находятся в твердом состоянии. Более того, тепловой энергии должно быть достаточно для плавления огромных объемов твердого материала. Например, в США в бассейне р.Колумбия (штаты Вашингтон и Орегон) объем базальтов более 820 тыс. км3; такие же крупные толщи базальтов встречаются в Аргентине (Патагония), Индии (плато Декан) и ЮАР (возвышенность Большое Кару). В настоящее время существуют три гипотезы. Одни геологи считают, что плавление обусловлено локальными высокими концентрациями радиоактивных элементов, но такие концентрации в природе кажутся маловероятными; другие предполагают, что тектонические нарушения в форме сдвигов и разломов сопровождаются выделением тепловой энергии. Существует еще одна точка зрения, согласно которой верхняя мантия в условиях высоких давлений находится в твердом состоянии, а когда вследствие трещинообразования давление падает, она плавится и по трещинам происходит излияние жидкой лавы. См. также ВУЛКАНИЗМ.
Геохимия и состав Земли.
Определение химического состава Земли является трудной задачей, поскольку ядро, мантия и бóльшая часть коры недоступны для непосредственного опробования и наблюдений и делать выводы приходится на основе интерпретации косвенных данных и аналогий.
Земля как гигантский метеорит.
Предполагают, что метеориты представляют собой обломки ранее существовавших планет, по своему составу и строению имевших сходство с Землей. Существует несколько типов метеоритов. Наиболее известны и довольно часто встречаются железные метеориты, состоящие из металлического железа и железо-никелевых сплавов, которые, как полагают, составляли ядра существовавших планет и по аналогии должны быть идентичны земному ядру по плотности, составу и магнитным свойствам.
Второй тип – каменные метеориты, состоящие преимущественно из железо-магнезиальных силикатных минералов. Они более распространены по сравнению с железными метеоритами и по своей плотности соответствуют породам, слагающим мантию. По составу каменные метеориты очень близки к ультраосновным породам Земли.
Третий тип – смешанные метеориты, имеющие в своем составе металлы и силикаты, что указывает на их генезис из переходного (от мантии к ядру) слоя ранее существовавшей планеты.
Плотность Земли.
Средняя плотность Земли в 5,5 раз выше плотности воды. Согласно оценкам, увеличение плотности с глубиной, которое хорошо согласуется с общей массой Земли, моментом инерции, сейсмическими свойствами и сжимаемостью, распределяется следующим образом. Средняя плотность земной коры (по крайней мере, в ее верхней части до глубины 32 км) составляет 3,32 г/см3, ниже поверхности Мохоровичича она непрерывно возрастает (эта закономерность несколько нарушается на уровнях 415 и 988 км). На глубине 2900 км проходит граница между мантией и внешним ядром, где прослеживается резкий скачок плотности от 5,68 до 9,57 г/см3. С этой отметки и до границы между внешним и внутренним ядром на глубине 5080 км плотность продолжает непрерывно увеличиваться (составляя 11,54 г/см3 на глубине 4830 км). Плотность внутреннего ядра оценивается от 14 до 17 г/см3.
Земля как гигантская доменная печь.
Некоторые геологи полагают, что если Земля некогда находилась в расплавленном состоянии, то вполне вероятно, что этот расплавленный материал разделялся на слои разного состава подобно тому, как это происходит в доменной печи, когда на дне скапливается металл, выше – сульфиды, а еще выше – силикаты. Возможно, недра Земли делятся в такой же последовательности на металлическое ядро и сульфидную и силикатную оболочки. Однако никаких признаков сульфидного слоя не было обнаружено.
Состав земной коры.
Бóльшая часть земной коры не доступна для изучения, потому что она перекрыта более молодыми осадочными породами, скрыта водами морей и океанов и даже если где-то выходит на поверхность, отбор образцов может быть выполнен из относительно небольших толщ. Более того, разнообразие горных пород и минералов и разная степень их участия в строении Земли затрудняют или делают невозможным получение репрезентативных проб. Любые количественные показатели или осредненные данные о химическом и минералогическом составе земной коры представляют грубое приближение к истинной характеристике.
С большей или меньшей степенью достоверности общее представление о химическом составе земной коры было составлено на основании анализа более 5000 проб изверженных (магматических) пород. Установлено, что на 99% она состоит из 12 элементов. Их участие в весовых процентах распределяется следующим образом: кислород (46,6), кремний (27,7), алюминий (8,1), железо (5,0), кальций (3,6), натрий (2,8), магний (2,6), титан (2,1), марганец (0,4), фосфор (0,1), сера и углерод (вместе менее 0,1). Очевидно, что в земной коре преобладает кислород, поэтому 10 наиболее распространенных металлов присутствуют в форме оксидов. Однако обычно минералы, слагающие породы, представлены не простыми, а сложными оксидами, в состав которых входят несколько металлов. Поскольку одним из самых распространенных элементов на Земле является кремний, многие минералы представляют собой разнообразные сложные силикаты. Сочетание минералов в разных количественных пропорциях формирует многообразие горных пород.
Химический состав атмосферы.
Современная атмосфера представляет собой результат медленной и продолжительной утраты в ходе вулканической деятельности и других процессов первоначальной атмосферы Земли. Примерно 3,1–2,7 млрд. лет назад с началом выделения больших количеств углекислого газа и водяных паров появились условия для жизнедеятельности первых растений, осуществляющих процесс фотосинтеза. Большие количества кислорода, выделявшиеся в атмосферу растениями, сначала расходовались на окисление металлов, о чем свидетельствует широкое распространение на земном шаре докембрийских железных руд. 1,6 млрд. лет назад содержание свободного кислорода в атмосфере достигло примерно 1% его современного количества, что позволило зародиться примитивным животным организмам. По-видимому, первозданная атмосфера имела восстановительный характер, тогда как современная, вторичная, атмосфера характеризуется окислительными свойствами. Постепенно ее химический состав менялся благодаря продолжающейся вулканической деятельности и эволюции органического мира. См. также АТМОСФЕРА ЗЕМЛИ.
Химический состав океанов.
Предполагают, что первоначально на Земле вода отсутствовала. По всей вероятности, современные воды на поверхности Земли имеют вторичное происхождение, т.е. высвободились в виде пара из минералов земной коры и мантии в результате вулканической деятельности, а не были образованы путем соединения свободных молекул кислорода и водорода. Если бы морская вода постепенно накапливалась, то объем Мирового океана должен был бы непрерывно увеличиваться, однако прямые геологические доказательства этого обстоятельства отсутствуют; это означает, что океаны существовали на протяжении всей геологической истории Земли. Изменение химического состава океанических вод происходило постепенно. См. также ОКЕАН.
Сиаль и сима.
Существует разница между породами коры, которые подстилают континенты, и породами, залегающими под дном океанов. Состав континентальной коры соответствует гранодиориту, т.е. породе, состоящей из калиевого и натриевого полевого шпата, кварца и небольших количеств железо-магнезиальных минералов. Океаническая кора соответствует базальтам, состоящим из кальциевого полевого шпата, оливина и пироксена. Породы континентальной коры характеризуются светлой окраской, низкой плотностью и обычно кислым составом, часто их называют сиаль (по преобладанию Si и Al). Породы океанической коры отличаются темной окраской, высокой плотностью и основным составом, их называют сима (по преобладанию Si и Mg). Считается, что породы мантии имеют ультраосновной состав и состоят из оливина и пироксена. В современной российской научной литературе термины «сиаль» и «сима» не используются, т.к. считаются устаревшими.
ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ
Геологические процессы подразделяются на экзогенные (разрушительные и аккумулятивные) и эндогенные (тектонические).
РАЗРУШИТЕЛЬНЫЕ ПРОЦЕССЫ
Денудация.
Действие водотоков, ветра, ледников, морских волн, морозного выветривания и химического растворения приводят к разрушению и снижению поверхности материков (рис. 2). Продукты разрушения под действием гравитационных сил сносятся в океанические впадины, где происходит их накопление. Таким образом происходит усреднение состава и плотности пород, слагающих материки и котловины океанов, и уменьшение амплитуды рельефа Земли.
Ежегодно 32,5 млрд. т обломочного материала и 4,85 млрд. т растворенных солей выносится с материков и отлагается в морях и океанах, в результате чего вытесняется примерно 13,5 км3 морской воды. Если бы такие темпы денудации сохранились и в будущем, материки (объем надводной части которых 126,6 млн. км3) через 9 млн. лет превратились бы в почти плоские равнины – пенеплены. Такая пенепленизация (выравнивание) рельефа возможна лишь теоретически. В действительности изостазические поднятия компенсируют потери за счет денудации, а некоторые породы настолько прочны, что практически не поддаются разрушению.
Континентальные отложения перераспределяются в результате совместного действия выветривания (разрушения пород), денудации (механического сноса пород под воздействием текучих вод, ледников, ветра и волновых процессов) и аккумуляции (отложения рыхлого материала и образования новых пород). Все эти процессы действуют лишь до определенного уровня (обычно уровня моря), который рассматривается как базис эрозии.
При транспортировке рыхлые осадки сортируются по размеру, форме и плотности. В результате кварц, содержание которого в исходной породе может составлять всего несколько процентов, образует однородную толщу кварцевых песков. Аналогичным образом частицы золота и некоторых других тяжелых минералов, содержащих, например, олово и титан, концентрируются в руслах водотоков или на отмелях и образуют россыпные месторождения, а тонкозернистый материал отлагается в виде илов и затем превращается в глинистые сланцы. Такие компоненты, как, например, магний, натрий, кальций и калий, растворяются и выносятся поверхностными и грунтовыми водами, а затем осаждаются в пещерах и других полостях или поступают в морские воды.
Стадии развития эрозионного рельефа.
Рельеф служит показателем стадии выравнивания (или пенепленизации) материков. В горах и районах, испытавших интенсивное поднятие, эрозионные процессы протекают наиболее активно. Такие районы характеризуются быстрым врезанием речных долин и увеличением их длины в верхнем течении, а ландшафт соответствует молодой, или юной, стадии эрозии. В других районах, где амплитуда высот невелика и в основном прекратилась эрозия, крупные реки преимущественно переносят влекомые и взвешенные наносы. Такой рельеф присущ зрелой стадии эрозии. На участках с незначительными амплитудами высот, где поверхность суши ненамного превышает уровень моря, преобладают аккумулятивные процессы. Там река обычно течет несколько выше общего уровня низкой равнины в естественном возвышении, сложенном осадочным материалом, и образует в приустьевой зоне дельту. Это самый древний эрозионный рельеф. Однако не все районы находятся на одной и той же стадии развития эрозии и имеют одинаковый облик. Формы рельефа весьма различаются в зависимости от климатических и погодных условий, состава и строения местных пород и характера эрозионного процесса (рис. 3, 4).
Перерывы эрозионных циклов.
Отмеченная последовательность эрозионных процессов справедлива в отношении материков и океанических бассейнов, находящихся в статических условиях, однако на самом деле они подвержены многим динамическим процессам. Эрозионный цикл может быть прерван под влиянием изменений уровня моря (например, в связи с таянием ледниковых покровов) и высоты материков (например, в результате горообразования, разломной тектоники и вулканической деятельности). В Иллинойсе (США) морены перекрыли зрелый доледниковый рельеф, придав ему типичный молодой облик. В Большом каньоне Колорадо перерыв эрозионного цикла был обусловлен поднятием суши до отметки 2400 м. По мере поднятия территории р.Колорадо постепенно врезалась в свою пойму и оказалась ограниченной бортами долины. В результате этого перерыва образовались наложенные меандры, свойственные древним долинам рек, существующих в условиях молодого рельефа (рис. 5). В пределах плато Колорадо меандры врезаны на глубину 1200 м. Глубокие меандры р.Саскуэханна, которые прорезают горы Аппалачи, также свидетельствуют о том, что этот район некогда представлял собой низменность, которую пересекала «дряхлая» река.
АККУМУЛЯТИВНЫЕ ПРОЦЕССЫ
Осадконакопление
– один из важнейших геологических процессов, в результате которого образуются новые породы. Материал, снесенный с суши, в конечном итоге накапливается в морях и океанах, где формируются толщи песка, алевритов и глины. Обычно алевриты и глинистые отложения осаждаются на морском дне дальше от берега. При последующем поднятии этих районов они преобразуются в глинистые сланцы. Пески отлагаются преимущественно на пляжах и в конце концов преобразуются в песчаники. Если продукты разрушения не подвергаются сортировке, то со временем они превращаются в конгломераты. Химические соединения, переносимые в растворах, пополняют запасы веществ, необходимых для жизнедеятельности морских растений и животных. Например, кальций используется для построения известковых раковин и оболочек, а вместе с фосфором – для построения костей и зубов животных; железо принимает участие в кроветворении у рыб и других животных, а кобальт является компонентом витамина В12. Когда животные умирают, их раковины и скелеты, состоящие из карбоната кальция, оседают на морском дне, а при последующем поднятии территории обнажаются в виде толщ известняка. Кроме того, химические вещества могут непосредственно осаждаться при испарении морской воды. Именно таким способом образуются месторождения поваренной соли. Если органические вещества накапливаются в континентальных условиях, формируются залежи каменного угля, а в морских – образуется нефть.
Большей частью такого рода осадконакопление происходит на материковых окраинах и влечет за собой увеличение их площадей за счет наращивания дельт, шельфов и рифов. Именно в этих условиях формируются биогенные карбонатные осадки. Поскольку основная часть снесенного материала оседает как раз в полосе прибрежного мелководья, эта зона при небольшом понижении уровня моря может оказаться в субаэральных условиях. Лишь незначительная часть обломочного терригенного материала выносится далеко за пределы шельфа (рис. 6).
ТЕКТОНИКА
Давно установлено, что горы формируются в результате образования складок и разломов и тектонических поднятий осадочных толщ, которые накапливались на дне моря. Кроме того, имеется много доказательств, что районы наиболее интенсивных тектонических нарушений приурочены к прибрежным зонам морей, где мощность осадков наибольшая. Горообразование (орогенез) – один из важнейших процессов формирования рельефа Земли, в результате которого осадочные толщи, снесенные с материков, вновь подвергаются тектоническим поднятиям. Наблюдения в современных горных районах свидетельствуют о том, что в развитии рельефа можно выделить несколько четких этапов.
Образование геосинклиналей.
Предполагают, что горообразование начинается с накопления мощных осадочных толщ в геосинклиналях – крупных вытянутых впадинах земной коры. Большинство из них испытывало медленное длительное погружение (в течение 50–100 млн. лет) и заполнение осадками мощностью иногда до 9 км. Установлено, что масштабы и темпы этих процессов сильно различались в пределах одной впадины и даже имели разную направленность: в то время как одна ее часть активно погружалась, другая находилась в относительно стабильных условиях и там не накапливались осадки. В образовании геосинклиналей и осадконакоплении прослеживается определенная цикличность: трансгрессии морей регулярно чередовались с регрессиями.
Некоторые горные страны состоят из внутренних хребтов, сложенных складчатыми осадочными толщами, и параллельных им внешних хребтов, сложенных преимущественно вулканическими породами. Не исключено, что эти хребты формировались в разных геосинклинальных впадинах, но были взаимосвязаны. Впадины с осадочными породами называют миогеосинклиналями, а с вулканическими – эвгеосинклиналями. Взаимное положение этих двух типов было постоянным: эвгеосинклинали были обращены к морю, а миогеосинклинали располагались между эвгеосинклиналями и сушей. Обычно процессы горообразования сначала охватывали эвгеосинклинали, а затем – миогеосинклинали. Береговые хребты Вашингтона и Орегона и горы Сьерра-Невада в Калифорнии соответствовали эвгеосинклинальной зоне. Такой же генезис имеют Аппалачи, горы Новой Англии (в т.ч. Уайт-Маунтинс) и Пидмонт. Напротив, с миогеосиклиналями были связаны Скалистые горы в пределах Монтаны, Вайоминга и Колорадо, а также зона Долин и Хребтов в Пенсильвании и Теннеси.
Преобразование геосинклиналей.
На определенных стадиях развития в геосинклиналях происходит образование складок и разломов, а заполняющие осадки метаморфизуются под воздействием высоких температур и давлений. Проявляются процессы сжатия, направленного под прямым углом к оси впадин, что сопровождается деформациями осадочных толщ.
Современные геосинклинали
– это впадины вдоль островов Ява и Суматра, желобов Тонга – Кермадек, Пуэрто-Рико и др. Возможно, их дальнейшее прогибание тоже приведет к образованию гор. По мнению многих геологов, побережье Мексиканского залива в пределах США тоже представляет собой современную геосинклиналь, хотя, судя по данным бурения, признаки горообразования там не выражены. Активные проявления современной тектоники и горообразования наиболее четко наблюдаются в молодых горных странах – Альпах, Андах, Гималаях и Скалистых горах.
Тектонические поднятия.
На заключительных стадиях развития геосинклиналей, когда горообразование завершается, происходит интенсивное общее поднятие материков; в пределах горных стран на этой стадии рельефообразования происходят дизъюнктивные дислокации (смещение отдельных блоков горных пород по линиям разломов).
ГЕОЛОГИЧЕСКОЕ ВРЕМЯ
Стратиграфическая шкала.
Стандартная шкала геологического времени (или геологическая колонка) – результат систематического изучения осадочных пород в разных районах земного шара. Поскольку большинство ранних работ проводилось в Европе, стратиграфическая последовательность отложений этого региона была принята в качестве эталона и для других районов. Однако в силу различных причин эта шкала имеет недостатки и пробелы, поэтому она постоянно уточняется. Шкала очень подробна для более молодых геологических периодов, но ее детальность существенно снижается для более древних. Это неизбежно, поскольку геологическая летопись наиболее полна для событий недавнего прошлого и становится более фрагментарной с увеличением возраста отложений. Стратиграфическая шкала основана на учете ископаемых организмов, которые служат единственным надежным критерием для межрегиональных корреляций (особенно дальних). Установлено, что некоторые ископаемые соответствуют строго определенному времени и поэтому считаются руководящими. Породы, содержащие эти руководящие формы и их комплексы, занимают строго определенное стратиграфическое положение.
Значительно труднее проводить корреляции для палеонтологически немых пород, не содержащих ископаемых организмов. Поскольку хорошо сохранившиеся раковины встречаются только начиная с кембрийского периода (примерно 570 млн. лет назад), докембрийское время, охватывающее ок. 85% геологической истории, нельзя изучить и подразделить столь же детально, как более молодые эпохи. Для межрегиональных корреляций палеонтологически немых пород используются геохимические методы датирования.
В случае необходимости в стандартную стратиграфическую шкалу вводились изменения, отражающие региональную специфику. Например, в Европе выделяется каменноугольный период, а в США ему соответствуют два – миссисипский и пенсильванский. Повсеместно возникают трудности при корреляции местных стратиграфических схем с международной геохронологической шкалой. Международная комиссия по стратиграфии помогает решать эти проблемы и устанавливает нормативы для стратиграфической номенклатуры. Она настоятельно рекомендует использовать при геологической съемке местные стратиграфические подразделения, а для сравнения сопоставлять их с международной геохронологической шкалой. Некоторые ископаемые имеют очень широкое, почти глобальное распространение, а другие – узко региональное.
Эры – самые крупные подразделения истории Земли. Каждая из них объединяет несколько периодов, характеризующихся развитием определенных классов древних организмов. Массовое вымирание различных групп организмов происходило в конце каждой эры. Например, трилобиты исчезли в конце палеозоя, а динозавры – в конце мезозоя. Причины этих катастроф еще не выяснены. Это могли быть критические стадии генетической эволюции, пики космического излучения, выбросы вулканических газов и пепла, а также очень резкие изменения климата. Имеются доводы в поддержку каждой из этих гипотез. Однако постепенное исчезновение большого числа семейств и классов животных и растений к концу каждой эры и появление новых с началом следующей эры все еще остается одной из загадок геологии. Не увенчались успехом попытки связать массовую гибель животных на завершающих этапах палеозоя и мезозоя с глобальными циклами горообразования.
Геохронология и шкала абсолютного возраста.
Стратиграфическая шкала отражает лишь последовательность напластования пород и потому может использоваться только для обозначения относительного возраста различных слоев (рис. 9). Возможность установления абсолютного возраста пород появилась после открытия радиоактивности. До этого абсолютный возраст пытались оценить другими методами, например, путем анализа содержания солей в морской воде. При допущении, что оно соответствует твердому стоку рек земного шара, может быть измерен минимальный возраст морей. На основании предположения, что изначально океаническая вода не содержала примесей солей, и учета темпов их поступления возраст морей оценивался в широких пределах – от 20 млн. до 200 млн. лет. Кельвин оценил возраст слагающих Землю пород в 100 млн. лет, поскольку, по его мнению, столько времени понадобилось на то, чтобы изначально расплавленная Земля остыла до нынешней температуры ее поверхности.
Если не считать этих попыток, первые геологи довольствовались определением относительного возраста пород и геологических событий. Без всяких объяснений допускалось, что прошло довольно много времени с момента возникновения Земли до формирования различных типов отложений в результате процессов, которые действуют и поныне. И лишь когда ученые стали измерять скорости радиоактивного распада, у геологов появились «часы» для определения абсолютного и относительного возраста пород, содержащих радиоактивные элементы.
Темпы радиоактивного распада некоторых элементов незначительны. Это позволяет определять возраст древних событий путем измерения содержания таких элементов и продуктов их распада в конкретном образце. Поскольку скорость радиоактивного распада не зависит от параметров окружающей среды, можно определять возраст пород, находящихся в любых геологических условиях. Наиболее часто применяются уран-свинцовый и калий-аргоновый методы. Уран-свинцовый метод позволяет произвести точное датирование на основе замеров концентрации радиоизотопов тория (232Th) и урана (235U и 238U). При радиоактивном распаде образуются изотопы свинца (208Pb, 207Pb и 206Pb). Однако породы, содержащие эти элементы в достаточных количествах, встречаются довольно редко. Калий-аргоновый метод базируется на весьма медленном радиоактивном превращении изотопа 40K в 40Ar, что позволяет датировать события, имеющие возраст в несколько миллиардов лет, по соотношению в породах этих изотопов. Значительное преимущество калий-аргонового метода заключается в том, что калий, весьма распространенный элемент, присутствует в минералах, образованных во всех геологических обстановках – вулканической, метаморфической и осадочной. Однако возникающий в результате радиоактивного распада инертный газ аргон химически не связан и происходит его утечка. Следовательно, для датирования могут быть надежно использованы только те минералы, в которых он хорошо удерживается. Несмотря на этот недостаток, калий-аргоновый метод используется весьма широко. Абсолютный возраст самых древних пород на планете составляет 3,5 млрд. лет. В земной коре всех материков представлены очень древние породы, поэтому вопрос, какой из них самый древний, даже не возникает.
Возраст метеоритов, упавших на Землю, по определениям калий-аргоновым и уран-свинцовым методами, составляет примерно 4,5 млрд. лет. По оценкам геофизиков, основывающимся на данных уран-свинцового метода, Земля тоже имеет возраст ок. 4,5 млрд. лет. Если эти оценки верны, то в геологической летописи имеется пробел в 1 млрд. лет, соответствующий важному раннему этапу эволюции Земли. Возможно, самые ранние свидетельства были уничтожены или стерты каким-либо образом, когда Земля находилась в расплавленном состоянии. Вполне вероятно также, что древнейшие породы Земли были денудированы или перекристаллизовались за многие миллионы лет.
См. также ИСТОРИЧЕСКАЯ ГЕОЛОГИЯ
Страхов Н.М. Типы литогенеза и их эволюция в истории Земли. М., 1965
Любимова Е.А. Термика Земли и Луны. М., 1968
Хаин В.Е. Региональная геотектоника. Северная и Южная Америка, Антарктида и Африка. М., 1971
Леонов Г.П. Основы стратиграфии, тт. 1–2. М., 1973–1974
Хаин В.Е. Региональная геотектоника. Внеальпийская Европа и Западная Азия. М., 1977
Энциклопедия региональной геологии мира. Западное полушарие (включая Антарктиду и Австралию). Л., 1980
Аллисон А., Палмер Д. Геология. Наука о вечно меняющейся Земле. М., 1984