ФОСФОР
ФОСФОР (Phosphorus) – химический элемент 15(Va) группы Периодической системы, атомный номер 15, атомная масса 30,974. Известно 23 изотопа фосфора 24P –46P, среди них один стабильный 31P и только он встречается в природе. Период полураспада изотопа 30P 2,55 минуты; это первый радиоактивный изотоп, полученный искусственно в 1934 Фредериком и Ирен Жолио-Кюри.
Возможно, что фосфор в элементарном виде был получен еще в 12 в. арабским алхимиком Алхид Бехилом при перегонке мочи с глиной и известью, об этом свидетельствует древний алхимический манускрипт, хранящийся в Парижской библиотеке. Однако открытие фосфора обычно приписывается разорившемуся гамбургскому купцу Хеннигу Бранду. Предприниматель занимался алхимией, чтобы получить философский камень и эликсир молодости, с помощью которых можно было бы легко поправить свое материальное положение. После упаривания 50–60 ведер мочи (он брал ее в солдатских казармах) в течение двух недель и последующего сильного прокаливания сухого остатка с углем и песком в реторте, Бранду удалось в 1669 сконденсировать выделяющиеся пары под водой и получить небольшое количество желтого вещества. Оно светилось в темноте и поэтому было названо Брандом «холодным огнем» (kaltes Feuer). Современники Бранда назвали это вещество фосфором из-за его способности светиться в темноте (др. греч. jwsjoroV). Вообще, с древних времен «фосфорами» называли все вещества, способные испускать свет в темноте. Так, широко известен «болонский фосфор» – сульфид бария.
В 1682 Бранд опубликовал результаты своих исследований, и сейчас он справедливо считается первооткрывателем элемента № 15. Фосфор явился первым элементом, открытие которого документально зафиксировано, и его первооткрыватель известен.
Интерес к новому веществу был грандиозный, и Бранд этим пользовался – он демонстрировал фосфор только за деньги или обменивал небольшие его количества на золото. Несмотря на многочисленные усилия, осуществить свою заветную мечту – получить золото из свинца с помощью «холодного огня» - гамбургский купец так и не смог, и поэтому вскоре он продал рецепт получения нового вещества некоему Крафту из Дрездена за двести талеров. Новому хозяину удалось сколотить на фосфоре значительно бóльшее состояние – с «холодным огнем» он разъезжал по всей Европе и демонстрировал его ученым, высокопоставленным и даже королевским особам, например, Роберту Бойлю, Готфриду Лейбницу, Карлу Второму. Хотя способ приготовления фосфора держался в строжайшем секрете, в 1682 его удалось получить Роберту Бойлю, но и он сообщил свою методику только на закрытом заседании Лондонского королевского общества. Способ Бойля был предан огласке уже после его смерти, в 1692.
Долгое время фосфор не считали простым веществом, и только в 1770-х годах французский химик Антуан Лоран Лавуазье в своих работах, посвященных исследованию состава воздуха, смог твердо установить, что фосфор является элементарным веществом.
Фосфор в природе и его промышленная добыча.
Содержание фосфора в земной коре оценивается в 8 10–2% по массе. Фосфор – одиннадцатый по распространенности элемент на Земле и входит в двадцатку наиболее распространенных элементов Солнечной системы. Элемент № 15 обнаружен во многих типах метеоритов (каменных и каменно-железных) и на Луне. Например, в железных метеоритах содержание фосфора колеблется в диапазоне 0,02–0,94%(масс.), а в различных образцах лунного грунта оно составляет 0,05–0,32%(масс.). Несмотря на то, что геологи классифицируют фосфор, как элемент-примесь (в породах большей части земной коры его содержание составляет всего 0,1%), он является породообразующим, так как некоторые породы слагаются почти полностью из фосфатных минералов. В свободном состоянии фосфор на земле не встречается и существует в литосфере почти в высшей степени окисления, в виде ортофосфат-иона PO43–. Известно более двухсот минералов, содержащих фосфор в значительных (более 1%) количествах. Фосфатные месторождения обычно подразделяются на три группы: апатитовые месторождения, осадочные фосфориты и месторождения гуано.
Апатиты – разновидность фосфоритов, они могут быть как магматического, так и морского (осадочного) происхождения. Название это было дано группе минералов около двухсот лет назад, и в переводе с греческого означает «обманчивый» (apátán), изначально так называли минерал, который часто путали с аквамарином, аметистом или оливином. Апатитовые минералы представлены фторапатитом Ca5(PO4)3F (промышленно наиболее значимый), гидроксиапатитом Ca5(PO4)3(OH) и хлорапатитом Ca5(PO4)3Cl, франколитом (разновидность карбонатапатита) (Ca,H2O)10(F,OH)2(PO4,CO3)6, вилькеитом Ca10(OH)2(PO4,SiO4,SO4)6, пироморфитом Pb10Cl2(PO4,AsO4)6 и многими другими. Наиболее крупные месторождения магматического апатита находятся в России, странах Южной Африки (щелочной комплекс Палабора), Уганде и Бразилии. Крупнейшее в мире магматическое месторождение апатита – Хибинский массив нефелиновых сиенитов – залегает на Кольском полуострове, близ Кировска. Он был открыт в 1926 группой ученых под руководством академика А.Е.Ферсмана.
Большая часть мировых запасов фосфора приходится на морские (осадочные) фосфориты и продукты их выветривания. Предполагается, что они океанического происхождения. В прибрежных регионах пояса пассатов на протяжении долгого периода происходило отложение фосфатов вследствие различных органических и неорганических процессов. Концентрация фосфоритов в месторождении увеличивалась в результате медленной аккумуляции фосфатов из окружающей среды. Крупнейшими месторождениями осадочных фосфоритов владеют Марокко (70% от мировых запасов фосфатов) и Западная Сахара, США, Китай, Тунис, Казахстан.
Гуано (исп. guano) – естественные отложения, образующиеся при разложении костей и экскрементов морских птиц (больших бакланов, олушей и пеликанов), залежи гуано иногда достигают ста миллионов тонн. Гуано известно с незапамятных времен, еще в 200 до н.э. древние карфагеняне использовали птичий помет в качестве удобрения. В конце 19 – начале 20 в. были открыты «Птичьи острова» Перу, названные так из-за большого числа (около 20 млн.) обитающих там морских птиц. В те времена перуанское правительство получало реальные доходы за счет привлечения большого числа туристов к «Птичьим островам» и от продажи огромных количеств гуано в качестве удобрения. В последние сорок лет, вследствие деятельности перуанских рыбаков, популяции гуанопроизводящих птиц резко сократились (в 4 раза), так что некоторые из перуанских «Птичьих островов» сейчас вообще пустуют. Крупнейшие месторождения гуано расположены вдоль побережий Африки, Южной Америки, Калифорнии, Сейшельских островов. Сильно разложившееся гуано состоит преимущественно из монетита CaHPO4 и витлокита b-Ca3(PO4)2.
Мировая добыча (2002) фосфатов составляет 135 млн. тонн ежегодно. Крупнейшим в мире производителем фосфатов являются США (26% от мировой добычи). Разработки ведутся во Флориде (формация Боун-Велли), Северной Каролине, Айдахо и Юте. Королевство Марокко (вместе с Западной Сахарой) – второй по величине производитель фосфатной руды (17,3%) и крупнейший экспортер. Фосфориты разрабатываются в трех районах: Курибге, Юссуфии и Бен-Герире. Основное месторождение (Khouribga) находится в 120 км к югу от Касабланки. Общие запасы фосфоритов в Марокко составляют 64 млрд. тонн, разведанные 10 млрд. тонн (60% от разведанных в мире запасов). На третьем месте по добыче – Китай (16,7%), на четвертом – Россия (10,5%). Основным источником фосфорного сырья в России являются апатито-нефелиновые руды на Кольском полуострове. За более чем семьдесят лет, прошедших с момента открытия месторождения, добыто свыше 570 млн. тонн апатитового концентрата. Сейчас в пределах Хибинского массива разведано 10 месторождений, суммарные запасы которых составляют 3,6 млрд. тонн, а в целом на Кольском полуострове запасы руды составляют около 20 млн. тонн. Учитывая, что за все прошедшее время было добыто неполных полтора миллиарда тонн, запасов апатита России должно хватить еще на много лет.
Обычно промышленным считается такое месторождение, которое дает не менее 6000 тонн фосфатной породы с 1 га. В открытых карьерах фосфат добывается скребковыми экскаваторами. Сначала удаляются наносы песков и пустая порода, а затем извлекают фосфатную руду. От карьеров до обогатительных фабрик руда может подаваться (на расстояния в несколько км) по стальным трубам в виде водной пульпы.
В морской воде весь неорганический фосфор находится только в виде ортофосфат-аниона. Средняя концентрация фосфора в морской воде очень мала и составляет 0,07 мг Р/литр. Высоко содержание фосфора в районе Андаманских островов (около 12 мкмоль/л). Общее океаническое количество фосфора оценивается в 9,8·1010 тонн.
В атмосфере Земли фосфор отсутствует полностью.
Свойства простого вещества и промышленное получение фосфора.
Вопрос аллотропии фосфора сложен и до конца не решен. Обычно выделяют три модификации простого вещества – белую, красную и черную. Иногда их еще называют главными аллотропными модификациями, подразумевая при этом, что все остальные являются разновидностью указанных трех. Существует аморфный фосфор различных цветов и оттенков – от ярко-красного до фиолетового и коричневого.
Белый фосфор (желтый фосфор, тетрафосфор) P4, наиболее активная, летучая, всесторонне изученная и, в тоже время, метастабильная форма простого вещества. В чистом виде это бесцветное стекловидное вещество, сильно преломляющее свет. Белый фосфор обладает специфическим чесночным запахом, жирен на ощупь, мягок и легко режется ножом. Промышленный продукт может быть от соломенно-желтого до коричневого-красного и коричневого цветов. Как заметную примесь содержит красный фосфор, мышьяк, следы углеводородов и смол. Температура плавления чистого вещества 44,1° С, температура кипения 280° С (разл.), плотность 1823 кг/м3 (293К). Белый фосфор практически нерастворим в воде, но растворим при комнатной температуре в неполярных органических растворителях: бензоле (3,7 г на 100 г C6H6), тетрахлорметане (1,27 г на 100 г CCl4), диэтиловом эфире (1,39 г на 100 г Et2O). Хорошими растворителями для него являются жидкие аммиак и диоксид серы, а наилучшим – сероуглерод, в 100 г которого растворяется более 1000 г белого фосфора.
Есть две полиморфные модификации белого фосфора. При обычных температурах устойчива альфа-форма, она имеет кубическую решетку с очень большой элементарной ячейкой, содержащей 56 молекул P4.
Тетрафосфор химически очень активен, в мелкодисперсном состоянии
P4 + 5O2 = P4O10.
Белый фосфор хранят, режут и плавят под слоем воды, что вполне безопасно.
Фосфор загорается в атмосфере хлора с образованием смеси хлоридов:
P4 + 6Cl2 = 4PCl3
P4 + 10Cl2 = 4PCl5.
При взаимодействии с бромом и иодом дает тригалогениды, во фторе сгорает с образованием пентафторида. При нагревании с растворами щелочей белый фосфор диспропорционирует с образованием фосфина (с примесью водорода) и соли фосфиновой (фосфорноватистой) кислоты:
2P4 + 3Ba(OH)2 + 6H2O = 2PH3 + 3Ba(H2PO2)2
Белый фосфор довольно сильный восстановитель – вытесняет медь, свинец, ртуть и серебро из растворов их солей:
P4 + 10CuSO4 + 16H2O = 4H3PO4 + 10Cu + 10H2SO4.
Именно поэтому при отравлении белым фосфором рекомендуется выпить сильно разбавленный раствор медного купороса.
При слабом нагревании фосфор окисляется серой, тионилхлоридом, а взаимодействие его с твердыми KClO3, KMnO4, KIO3 может приобретать взрывной характер.
В темноте можно наблюдать холодное зеленоватое свечение белого фосфора, обусловленное протекающей разветвленной цепной реакцией окисления паров фосфора. На результатах исследования этого процесса советским физико-химиком Н.Н.Семеновым в 1920-х была создана теория разветвленных цепных реакций. Семенов ввел понятия верхнего и нижнего пределов воспламенения и области, ограниченной ими – полуострова воспламенения, за пределами которого реакция окисления паров фосфора не является разветвленной.
Белый фосфор чрезвычайно ядовит, доза в 0,05–0,1 г смертельна для человека. Он способен аккумулироваться в организме и вызывать некроз костных тканей (особенно челюстей).
Черный фосфор – термодинамически наиболее устойчивая и химически наименее активная форма элемента. Впервые получен в 1914 в виде кристаллической модификации высокой плотности (2690 кг/м3) американским физиком Перси Уильямом Бриджменом из белого фосфора при давлении 2·109 Па (20 тысяч атмосфер) и температуре 200° С. Это черное полимерное вещество, нерастворимое ни в одном из растворителей. В отличие от белого фосфора черный фосфор практически невозможно поджечь. По некоторым своим характеристикам он напоминает графит, например, является проводником. Есть данные о существовании трех кристаллических модификаций черного фосфора. Кроме того описан аморфный черный фосфор. При температуре 220–230° С и давлении 13 000 атмосфер белый фосфор практически мгновенно превращается в черную кристаллическую форму. В более мягких условиях образуется аморфное вещество.
Красный фосфор – недостаточно изученная форма простого вещества. Есть сообщения о его существовании в кристаллической форме, но полностью структура не установлена, однако доказано его полимерное строение. Аморфный красный фосфор был открыт в 1847 в Швеции профессором химии Антоном Риттером фон Кристелли Шреттером – он нагревал белый фосфор в запаянной ампуле в атмосфере оксида углерода(II) при 500° С. Обычный продажный препарат грубодисперсен и окрашен в пурпурный цвет. Значения плотности красного фосфора, в зависимости от способа получения, лежат в интервале 2000–2400 кг/м3. По своей реакционной способности аморфный фосфор значительно уступает белому: воспламеняется при более высоких температурах, не светится в темноте, не взаимодействует с растворами щелочей. Красный фосфор нелетуч, не растворяется ни в одном растворителе, а только в расплавах свинца и висмута. В отличие от белого он неядовит, во влажном воздухе постепенно окисляется с образованием смеси фосфорных кислот. Медленным окислением красного фосфора объясняется его кажущаяся гигроскопичность.
При кристаллизации фосфора из расплавленного свинца в 1865 немецкий физик Иоганн Вильгельм Гитторф получил кристаллы фиолетового фосфора (фосфор Гитторфа). Сейчас точно установлена его структура. На основании косвенных данных предполагают, что фосфор Гитторфа – крупнокристаллическая модификация красного фосфора.
В результате нагревания любой модификации фосфора при атмосферном давлении получается пар, состоящий из тетраэдрических молекул P4. При температурах выше 800° С начинается заметная диссоциация тетрафосфора с образованием молекул P2. Степень дальнейшего распада с образованием атомного пара даже при температурах порядка 2000° С не превышает нескольких процентов. При конденсации паров фосфора или затвердевании его расплава всегда образуется метастабильная белая модификация.
На протяжении ста лет с момента открытия Бранда единственным источником элементарного фосфора являлась моча. В 1743 Марграф усовершенствовал метод извлечения элемента из мочи, предложив добавлять поташ к сухому остатку после ее перегонки. Гамбургский алхимик и другие исследователи смогли получить фосфор потому, что в сухом остатке содержится до 10% фосфата натрия, который при температурах 800–1000° С способен восстанавливаться углем. К концу 18 в. мочу заменили кости. В 1769 Юхан Ган доказал, что в костях содержится большое количество фосфора. В 1771 Карл Шееле разработал способ получения фосфора из костяной золы путем обработки ее серной кислотой и восстановления образовавшихся кислых фосфатов углем при нагревании. В 1829 Фридрих Вёлер получил белый фосфор, нагревая костяную муку со смесью кремнезема, глины и угля. Протекающая при этом реакция легла в основу современного промышленного получения фосфора. В те времена способ Вёлера широкого распространения не получил, так как процесс проходил при высокой температуре, недоступной тогда в промышленности, поэтому еще долгое время фосфор получали по способу Шееле. Первый завод по производству фосфора был построен в Германии в 1834. В России производство фосфора было организовано молодым коммерсантом Евграфом Тупициным в декабре 1871. Завод был построен на речке Данилихе, в Перми и насчитывал двенадцать корпусов. Фосфор получали из костей, и он был значительно дешевле иностранного. Большая часть фосфора, потреблявшегося тогда в России, производилось на заводе Тупицина, хотя существовало много мелких фосфорных фабрик: в Вологде, Калуге, Боровичах и других городах. Значительный успех в процессе производства фосфора был достигнут английским инженером Джеймсом Рэдманом, который запатентовал процесс получения белого фосфора в электропечах. Несмотря на многие технологические трудности, в 1891 в Англии и Франции началось промышленное производство фосфора по методу Рэдмана. До внедрения в Европе электротермического метода, Российская Империя занимала третье место в мире по производству фосфора, но потом из крупного экспортера превратилась в импортера, так как английский фосфор был дешевле отечественного, получаемого из костей.
Сейчас электротермический способ является основным в производстве фосфора. Химическая составляющая процесса основана на реакции Вёлера, сырьем служит фосфат кальция (фосфоритовый концентрат). Его нагревают в смеси с кварцевым песком и коксом в электрической печи при температуре около 1300° С. Сначала диксид кремния вытесняет фосфорный ангидрид из фосфата, который затем восстанавливается углеродом до элементного фосфора. Процесс можно описать двумя уравнениями реакций:
2Ca3(PO4)2 + 6SiO2 = 6CaSiO3 + P4O10
Или суммарно:
2Ca3(PO4)2 + 6SiO2 + 10C = 6CaSiO3 + 10CO + P4.
Соединения фосфора. С некоторой долей условности можно сказать, что в своих многочисленных соединениях фосфор может находиться в следующих степенях окисления: –3, –1 и от 0 до +5. Если принять, что в фосфине (PH3) фосфор находится в низшей степени окисления –3, то все нечетные степени окисления получаются за счет последовательного добавления к фосфору атомов кислорода, каждый из которых оттягивает на себя по два электрона. Кроме того, возможность образования связей P–P в некоторых веществах приводит к появлению степеней окисления +2 и +4.
Примеры:
P–3: фосфин PH3, триэтилфосфин P(C2H5)3;
P–1: триэтилфосфиноксид PO(C2H5)3 и диметилхлорфосфин P(CH3)2Cl;
P0: простое вещество;
P+1: фосфиновая и диэтилфосфиновая кислоты:
P+2: гиподифосфористая кислота и ее производные:
P+3: фосфоновые, алкилфосфоновые кислоты и их производные:
P+4: гипофосфорная кислота и ее производные:
P+5: фосфорные кислоты и их производные:
Важнейшие неорганические соединения фосфора:
Фосфин PH3 (фосфористый водород), бесцветный газ с характерным запахом чеснока. Чистый фосфин загорается на воздухе только при 150° С, но обычно в качестве примеси он содержит следы более активного дифосфина (P2H4) и поэтому самовоспламеняется на воздухе при комнатной температуре. При окислении фосфина образуется фосфорная кислота:
PH3 + 2O2 = H3PO4.
Фосфористый водород растворяется в воде с образованием нейтрального раствора. Фосфин проявляет слабые основные свойства. Протонируется (присоединяет протон) (с образованием иона PH4+) только наиболее сильными кислотами:
PH3 + HI = PH4I.
Образующиеся соли фосфония термически неустойчивы и разлагаются водой.
Фосфин можно получить растворением белого фосфора в щелочи, действием растворов минеральных кислот на фосфиды металлов или термическим разложением фосфоновой кислоты:
Mg3P2 + 3H2SO4(р-р)= 2PH3 + 3MgSO4
«Блуждающие огни», возникающие иногда на болотах, являются следствием самовоспламенения фосфина, образующегося за счет биохимического восстановления органических фосфорных эфиров.
Фосфин применяется в синтезе фосфорорганических соединений и высокочистого фосфора.
Фосфористый водород – чрезвычайно ядовитый газ. Летальный исход наблюдается после получасового пребывания в атмосфере с концентрацией 0,05 мг/л PH3.
Фосфиновая кислота (устар. фосфорноватистая) H3PO2, бесцветные кристаллы, расплывающиеся на воздухе и хорошо растворимые в воде, Тпл 26,5° С. В промышленности получается при кипячении белого фосфора с водной суспензией шлама Ca(OH)2 или Ba(OH)2. Образовавшийся гипофосфит кальция обрабатывают сульфатом натрия или раствором серной кислоты с целью получения гипофосфита натрия или свободной кислоты, которые являются товарными продуктами.
Фосфиновая кислота образует только монозамещенные соли (исключение K2HPO2). Cпектроскопически доказано наличие равновесия:
При нагревании фосфорноватистая кислота разлагается с образованием сложной смеси продуктов.
Кислота и ее соли широко применяются в качестве восстановителей (например, при никелировании), антиоксидантов алкидных смол, стабилизаторов при проведении многих реакций полимеризации.
Оксид фосфора(III) (фосфористый ангидрид) P4O6. Бесцветное, кристаллическое, очень ядовитое вещество с неприятным запахом. Тпл 23,8° С. Структуру его легко можно представить, исходя из строения белого фосфора:
Получают его при неполном окислении элементного фосфора и затем очищают от примесей путем перекристаллизации из сероуглерода.
P4O6 разлагается при нагревании, с водой образует фосфоновую кислоту, бурно реагирует с галогенами, легко присоединяет серу:
P4O6 + 6H2O = 4H3PO3
3P4O6 + 12Br2 = 8POBr3 + P4O10
P4O6 + 4S = P4O6S4.
Фосфоновая кислота H3PO3 – бесцветное кристаллическое сильно гигроскопичное вещество, Тпл 74° С. Хорошо растворяется в воде, получается при взаимодействии трихлорида фосфора с водой или безводной щавелевой кислотой:
PCl3 + 3H2C2O4 = H3PO3 + 3CO2+ 3CO + 3HCl.
Фосфоновая (чаще ее называют фосфористой) двухосновна, так как один атом водорода связан с фосфором, хотя есть доказательства существования равновесия, сильно сдвинутого вправо:
P(OH)3« H2PO3H.
Не существует трехзамещенных фосфитов металлов, но получены трехзамещенные органические эфиры – P(OC2H5)3.
При нагревании раствора кислоты образуется водород и фосфорная кислота.
Фосфоновая кислота и ее соли находят ограниченное применение в качестве восстановителей.
Трихлорид фосфора PCl3 – жидкость с резким неприятным запахом, дымящая на воздухе. Ткип 75,3° С, Тпл –40,5° С. В промышленности его получают пропусканием сухого хлора через суспензию красного фосфора в PCl3. Хорошо растворяется во многих органических растворителях, практически нацело гидролизуется водой:
Находит широкое применение в органическом синтезе.
Пентахлорид фосфора PCl5 – светло-желтое с зеленоватым оттенком кристаллическое вещество с неприятным запахом. Кристаллы имеют ионное строение [PCl4+][PCl6–]. Твозг 159° С. Получается при взаимодействии PCl3 с хлором или S2Cl2:
PCl3 + Cl2 = PCl5
3PCl3 + S2Cl2 = PCl5 + 2PSCl3.
Гидролизуется водой до триоксихлорида:
PCl5 + H2O = POCl3 + 2HCl
Находит широкое применение при получении других соединений фосфора и в органическом синтезе.
Оксид фосфора(V) (фосфорный ангидрид) P2O5. Известно несколько полиморфных модификаций пентаоксида фосфора, наибольшее значение из них имеет так называемая Н-форма и именно она производится промышленностью при сжигании фосфора в избытке сухого воздуха. Н-форма – белый кристаллический, чрезвычайно гигроскопичный порошок, возгоняющийся при 359° С. При поглощении влаги из воздуха превращается в сложную смесь метафосфорных кислот, но при взаимодействии с избытком теплой воды превращается в фосфорную кислоту:
P4O10 + 6H2O = 4H3PO4.
Фрагмент его «алмазоподобной» структуры можно легко получить из такового для P4O6:
Фосфорный ангидрид – наиболее сильный из известных осушающих агентов. Благодаря этому имеет широкое применение в лабораторной практике. Он дегидратирует концентрированную серную, азотную, хлорную и другие кислоты, а также многие органические соединения:
4HNO3 + P4O10 = 2N2O5 + 4HPO3
2H2SO4 + P4O10 = 2SO3 + 4HPO3.
На практике дегидратирующая способность P4O10 осложняется образованием на его поверхности плотной пленки фосфорных кислот. Частично этого можно избежать, используя смесь фосфорного ангидрида со стекловатой.
Оксид фосфора(V) – конденсирующий и дегидратирующий агент в органическом и неорганическом синтезе. Катализатор (нанесенный на кизельгур) полимеризации изобутилена.
Ортофосфорная кислота, часто называемая просто фосфорной, H3PO4. Бесцветные кристаллы, расплывающиеся на воздухе. Тпл 38,5° С. Впервые фосфорная кислота была описана в 1680 Робертом Бойлем, который установил, что водный раствор продуктов сгорания фосфора обладает кислыми свойствами. В промышленности фосфорную кислоту получают двумя способами: растворением фосфорного ангидрида в воде («сухой» процесс) и обработкой апатитового концентрата 85–90%-ой серной кислотой («мокрый» процесс):
Ca10(PO4)6F2 + 10H2SO4 + 20H2O = 6H3PO4 + 2HF + 10CaSO4·2H2O.
Второй способ более экономичен, и большая часть кислоты (для получения удобрений) производится именно так, но чистую H3PO4 получают первым способом.
Фосфорная кислота трехосновная, однако константа диссоциации по третьей ступени очень мала (К3 = 4,4·10–13), поэтому в водном растворе она титруется (см. ТИТРОВАНИЕ) только до гидрофосфата, т.е. как двухосновная. Образует одно-, двух- и трехзамещенные неорганические фосфаты.
Фосфорная кислота находит широкое применение в металлургии – для чистки, травления и электрополировки поверхностей металлов. Разбавленная кислота используется в качестве «преобразователя ржавчины», так как образует на поверхности железа и стали нерастворимую пленку кислого фосфата железа, предохраняющую металл от коррозии. Используется и как связующий агент во многих строительных материалах. Пищевая кислота применяется при изготовлении безалкогольных напитков и многих других пищевых продуктов.
Фосфаты аммония придают огнестойкость древесине. Фосфаты кальция и натрия широко используются в пищевой промышленности (разрыхлители теста, стабилизаторы молочных продуктов), являются компонентами зубных паст и чистящих средств. Кроме того, одна из самых важных областей применения фосфатов щелочных металлов – приготовление буферных систем, самой известной из которых является смесь KH2PO4 и Na2HPO4.
Биохимия фосфора и его значение в питании человека.
Жизнь не может существовать без фосфора, этот элемент необходим как субмикроскопическим частицам – вирусам, так и высокоорганизованным живым системам – животным и человеку.
Фосфор – шестой по содержанию элемент в организме человека после кислорода, водорода, углерода, азота и кальция. Количество фосфора составляет 1–1,5% от массы тела.
Можно выделить несколько важнейших функций, выполняемых соединениями фосфора в организме человека:
Рост и поддержание целостности костной ткани и зубов. В костях содержится примерно 85% от общего количества фосфора (в виде гидроксиапатита) в организме.
Участие в катаболических и анаболических реакциях. Особенно важны содержащие фосфор коферменты – низкомолекулярные вещества небелковой природы, действующие в составе ферментов и необходимые при специфических каталитических превращениях. Некоторые коферменты многим хорошо известны – это аденозинтрифосфат (АТФ), никотинамидадениндинуклеотидфосфат (НАДФ), флавинмононуклеотид (ФМН), пиридоксальфосфат, тиаминпирофосфат, кофермент А и другие. Каждый кофермент выполняет определенную функцию в клетке. Напрмер, гидролиз АТФ до АДФ – реакция, при сопряжении с которой потенциально эндергонические реакции(с поглощением энергии) превращаются в экзергонические (с выделением энергии), что необходимо при осуществлении важнейших биохимических процессов.
Служит предшественником в синтезе фосфолипидов – эфиров фосфорной кислоты и липидов (содержат остатки глицерина или сфигнозина, жирных кислот и фосфорной кислоты). Фосфолипиды обладают интересной особенностью – растворяются как в воде (за счет фосфата), так и в масле (за счет углеводородного остатка жирной кислоты) и эта характерная черта делает их важным компонентом клеточных мембран, так как такая структура оболочки позволяет проникать внутрь клетки (или из нее) как водо-, так и жирорастворимым питательным веществам.
Служит предшественником в синтезе ДНК и РНК. Эти носители генетической информации были впервые выделены в 1869 Мишером и названы им нуклеином. Мишер установил содержание значительного количества фосфора в нуклеине. ДНК и РНК представляют собой двухцепочечные спирализованные полимерные молекулы. Остов их образован остатками пентоз (дезоксирибозы для ДНК и рибозы для РНК) и фосфата. Важность фосфора в сохранении целостности РНК и ДНК была подтверждена на опытах с фагами (вирусами, заражающими клетки бактерий), меченными радиофосфором. Их назвали фагами-самоубийцами, так как по мере распада радиоактивного фосфора, структура нуклеиновой кислоты повреждалась настолько, что это становилось летальным для вируса.
Участвует (около 1% P в организме) в создании буферной емкости жидкостей и клеток тела. И этим все сказано.
Во всех живых организмах элемент № 15 находится исключительно в виде ортофосфат-аниона или органических эфиров фосфорной кислоты (фактически в виде неорганического фосфата), поэтому, наряду с термином «фосфор», при обсуждении биологической роли элемента, часто используют понятие «неорганический фосфат».
Значение фосфатов в питании человека огромно. Практически весь фосфор усваивается организмом человека в виде неорганических фосфатов, в среднем всасывается около 70% потребляемого с пищей фосфора. Суточная потребность в элементе для беременных и кормящих женщин составляет 1500 мг, для детей 2–6 лет 800 мг, детей 10–12 лет – 1200 мг, взрослого человека 800 мг.
В силу распространенности фосфатов в природе, обычный дневной рацион взрослого человека содержит фосфора в 7–10 раз больше суточной потребности в нем, поэтому встречаться со случаями недостаточного поступления этого элемента в организм приходится очень редко. Важнее правильное сочетание в рационе кальция и фосфора, ведь образование костной ткани связано с обоими этими элементами. Замечено, что если организм испытывает недостаток кальция, то, как правило, тут же обнаруживается переизбыток фосфора, и наоборот. Детальные исследования позволили установить, что оптимальная суточная норма фосфора, поступающего с продуктами питания, эквивалентна таковой для кальция, то есть пища должна содержать одинаковые количества по массе фосфора и кальция (исключение – норма для грудных детей). Ниже приводятся некоторые примеры содержания фосфора и кальция в обычной пище:
Продукт | Ca, мг/100г | P, мг/100г | Ca/P |
Жареная говядина | 12 | 250 | 0,05 |
Цельное молоко | 118 | 93 | 1,26 |
Вареная фасоль | 50 | 37 | 1,35 |
Жареная треска | 31 | 274 | 0,11 |
Пшеничный хлеб | 84 | 254 | 0,33 |
Картофель | 7 | 53 | 0,13 |
Яблоки | 7 | 10 | 0,70 |
Яйцо куриное | 54 | 205 | 0,26 |
Известны и некоторые заболевания, связанные с избытком неорганического фосфата в пище.
Применение фосфора и его соединений. Удобрения.
Область применения соединений фосфора огромна и не представляется возможным дать всеохватывающий ее обзор. Определение А.Е.Ферсмана: «Фосфор – элемент жизни…» находит повсеместное подтверждение. Фосфор – элемент не только биологической жизни, но и повседневной, действительно, фосфорсодержащие соединения используются в сельском хозяйстве, медицине, фармакологии, научных исследованиях, пищевой и химической промышленности, строительстве, металлургии, технике и, наконец, в повседневном быту. Такая ситуация была не всегда, и на протяжении долгого времени после открытия Бранда фосфор оказывался замешанным во многих скверных историях, все началось со спекуляций самого Бранда и его последователей. Далее «таинственные» вспыхивающие надписи на стенах в храмах и «чудо самовоспламенения свечей». Долгое время бытовали предрассудки и суеверия, связанные с «блуждающими» огнями, возникающими иногда над болотами и являющимися следствием самовоспламенения фосфина.
Большинство (80–90%) добываемой фосфатной руды идет на получение удобрений. В 1799 было доказано, что фосфор необходим для нормальной жизнедеятельности растений. Накапливаясь в биомассе, фосфор исчезает из почвы. Ежегодно мировой урожай уносит с полей несколько миллионов тонн фосфора, наряду с азотом и калием, поэтому необходимо возобновление его ресурсов в плодородном слое. В древние времена люди удобряли почву навозом, костями и гуано. Первое искусственное фосфорное удобрение – суперфосфат – было получено в Англии в 1839 Лаузом, а в 1842 там же было организовано его первое промышленное производство. В России первое предприятие по производству суперфосфата появилось в 1868. Сейчас его получают, обрабатывая апатит серной кислотой:
Ca10(PO4)6F2 + 7H2SO4 = 3Ca(H2PO4)2 + 7CaSO4 + 2HF.
Побочно получающийся сульфат кальция не отделяют.
Более ценный продукт – двойной суперфосфат, так как в нем содержится в три раза больше фосфора по массе, его получают обработкой апатита фосфорной кислотой:
Ca10(PO4)6F2 + 14H3PO4 +10H2O = 10Ca(H2PO4)2·H2O +2HF.
Доля производства удобрений, содержащих в своем составе только один фосфор, падает, и все больше производится комплексных удобрений, содержащих два или три питательных элемента. Большая часть фосфорных удобрений, производимых в России, приходится на аммофос, диаммофос и азофоску. Ежегодное мировое производство фосфорных удобрений на начало 21 в. составило 41 млн. тонн, а суммарное количество всех удобрений – 190 млн. тонн. Основными производителями фосфорных удобрений являются Марокко, США и Россия, а основными потребителями – страны Азии, Латинской Америки и Западной Европы.
Необходимый состав вносимого удобрения и его эффективность зависят от характеристик почвы, например, рН, но растворимость фосфатных удобрений определяет время, за которое происходит его усвоение растениями, и долю усвоенного фосфора, которая обычно мала и составляет около 20%.
Юрий Крутяков
Фигуровский Н.А. Открытие элементов и происхождение их названий. М., Наука, 1970
Фосфор в окружающей среде. Под ред. Э.Гриффита. М., «Мир», 1977
Технология фосфора. Под ред. В.А.Ершова. Л., «Химия», 1979
Корбридж Д. Фосфор: основы химии, биохимии, технологии. М., «Мир», 1982
Популярная библиотека химических элементов. М., Наука, 1983
Интернет-ресурсы: Фосфор: http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/
Ответь на вопросы викторины «Неизвестные подробности»